期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
面向复杂场景的基于改进YOLOX_s的安全帽检测算法
被引量:
2
1
作者
江新玲
杨乐
+3 位作者
朱家辉
陶磊
刘峰
段倩倩
《南京师大学报(自然科学版)》
CAS
北大核心
2023年第2期107-114,共8页
在工业生产过程中,安全帽是生产工人重要的安全保护工具.针对现有安全帽检测算法在复杂应用场景下对小目标、密集目标以及遮挡目标存在漏检、检测精度较低等问题,提出了一种基于YOLOX_s的改进算法.首先,通过改进YOLOX_s算法的模型结构,...
在工业生产过程中,安全帽是生产工人重要的安全保护工具.针对现有安全帽检测算法在复杂应用场景下对小目标、密集目标以及遮挡目标存在漏检、检测精度较低等问题,提出了一种基于YOLOX_s的改进算法.首先,通过改进YOLOX_s算法的模型结构,在原有网络结构的基础上新设立了一个预测特征层,其尺寸为160×160,该预测特征层通过将高层语义信息和低层传递的位置信息进行有效融合来预测小目标;其次,针对复杂的安全帽检测环境,将obj_loss的BCE_Loss改为Focal_Loss,即用Focal_Loss来训练obj分支来降低漏检;最后,将CSP1_X中的残差块改为shuffleNet基本单元以缩减参数量.改进后的算法mAP和recall分别提高了1.25%和2.32%,参数量缩减为3.61MB.改进后的算法有效降低了复杂环境下安全帽的漏检率和提高了检测精度,对实际生产过程中保障企业和工人的生命财产安全起到了一定的促进作用.
展开更多
关键词
安全帽检测
yolox
_
s
遮挡目标
小目标
密集目标
下载PDF
职称材料
题名
面向复杂场景的基于改进YOLOX_s的安全帽检测算法
被引量:
2
1
作者
江新玲
杨乐
朱家辉
陶磊
刘峰
段倩倩
机构
太原理工大学信息与计算机学院
中国煤炭工业协会
出处
《南京师大学报(自然科学版)》
CAS
北大核心
2023年第2期107-114,共8页
基金
国家重点研发计划项目(2020YFB1314001)
山西省基础研究计划项目(20210302124029)
+1 种基金
山西省重点研发计划项目(202102030201012)
山西省重点研发计划项目(202102100401015).
文摘
在工业生产过程中,安全帽是生产工人重要的安全保护工具.针对现有安全帽检测算法在复杂应用场景下对小目标、密集目标以及遮挡目标存在漏检、检测精度较低等问题,提出了一种基于YOLOX_s的改进算法.首先,通过改进YOLOX_s算法的模型结构,在原有网络结构的基础上新设立了一个预测特征层,其尺寸为160×160,该预测特征层通过将高层语义信息和低层传递的位置信息进行有效融合来预测小目标;其次,针对复杂的安全帽检测环境,将obj_loss的BCE_Loss改为Focal_Loss,即用Focal_Loss来训练obj分支来降低漏检;最后,将CSP1_X中的残差块改为shuffleNet基本单元以缩减参数量.改进后的算法mAP和recall分别提高了1.25%和2.32%,参数量缩减为3.61MB.改进后的算法有效降低了复杂环境下安全帽的漏检率和提高了检测精度,对实际生产过程中保障企业和工人的生命财产安全起到了一定的促进作用.
关键词
安全帽检测
yolox
_
s
遮挡目标
小目标
密集目标
Keywords
safety helmet detection
improved
yolox
_
s
occlusion targets
small targets
dense targets
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
面向复杂场景的基于改进YOLOX_s的安全帽检测算法
江新玲
杨乐
朱家辉
陶磊
刘峰
段倩倩
《南京师大学报(自然科学版)》
CAS
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部