期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于YOLOX-MobileNetV3模型的路面病害智能识别研究
被引量:
4
1
作者
李炎清
张关发
+2 位作者
崔志猛
马宗利
仰建岗
《交通节能与环保》
2023年第3期11-17,共7页
目前处理探地雷达(GroundPenetrating Radar,GPR)数据主要依赖于人工,容易造成病害识别误判、漏判率大、速度慢等问题,因此GPR智能目标识别已成为近几年的研究热点。本文提出基于卷积神经网络中的YOLOX-MobileNetV3模型来实现路面病害...
目前处理探地雷达(GroundPenetrating Radar,GPR)数据主要依赖于人工,容易造成病害识别误判、漏判率大、速度慢等问题,因此GPR智能目标识别已成为近几年的研究热点。本文提出基于卷积神经网络中的YOLOX-MobileNetV3模型来实现路面病害自动识别,利用三维数据的高信息量和深度学习智能提取特征的优势,实现路面病害的智能化识别。首先对三维探地雷达得到的GPR图片进行预处理,然后以3∶1的训练集和测试集数量比例对数据进行3轮训练和测试,并利用平均精确度、全类平均精确度、精确度、召回率、F1值、平均漏检率等指标来评价3次训练和测试的结果。结果表明:YOLOX-MobileNetV3模型的训练损失权重平均为5.014,测试准确率平均为61.35%。该模型识别路面结构病害尤其是裂缝、层间黏结不良的准确率较高。同时随着训练与测试轮数的增加,其精确度也会随之增加,召回率会随之减小。由此可见,YOLOX-MobileNetV3模型能够实现路面病害自动识别。
展开更多
关键词
道路检测
三维探地雷达
yolox
-
mobilenetv
3
模型
精确度
下载PDF
职称材料
题名
基于YOLOX-MobileNetV3模型的路面病害智能识别研究
被引量:
4
1
作者
李炎清
张关发
崔志猛
马宗利
仰建岗
机构
广州市道路研究院有限公司
广州诚安路桥检测有限公司
华东交通大学交通运输工程学院
华东交通大学土木建筑学院
华东交通大学道路工程研究所
出处
《交通节能与环保》
2023年第3期11-17,共7页
文摘
目前处理探地雷达(GroundPenetrating Radar,GPR)数据主要依赖于人工,容易造成病害识别误判、漏判率大、速度慢等问题,因此GPR智能目标识别已成为近几年的研究热点。本文提出基于卷积神经网络中的YOLOX-MobileNetV3模型来实现路面病害自动识别,利用三维数据的高信息量和深度学习智能提取特征的优势,实现路面病害的智能化识别。首先对三维探地雷达得到的GPR图片进行预处理,然后以3∶1的训练集和测试集数量比例对数据进行3轮训练和测试,并利用平均精确度、全类平均精确度、精确度、召回率、F1值、平均漏检率等指标来评价3次训练和测试的结果。结果表明:YOLOX-MobileNetV3模型的训练损失权重平均为5.014,测试准确率平均为61.35%。该模型识别路面结构病害尤其是裂缝、层间黏结不良的准确率较高。同时随着训练与测试轮数的增加,其精确度也会随之增加,召回率会随之减小。由此可见,YOLOX-MobileNetV3模型能够实现路面病害自动识别。
关键词
道路检测
三维探地雷达
yolox
-
mobilenetv
3
模型
精确度
Keywords
road detection
3
D ground penetrating radar
yolox
-
mobilenetv
3
model
accuracy
分类号
U416.2 [交通运输工程—道路与铁道工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于YOLOX-MobileNetV3模型的路面病害智能识别研究
李炎清
张关发
崔志猛
马宗利
仰建岗
《交通节能与环保》
2023
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部