期刊文献+
共找到453篇文章
< 1 2 23 >
每页显示 20 50 100
基于改进YOLOv7的复杂环境下红花采摘识别 被引量:16
1
作者 王小荣 许燕 +1 位作者 周建平 陈金荣 《农业工程学报》 EI CAS CSCD 北大核心 2023年第6期169-176,共8页
针对光照、遮挡、密集以及样本数量不均衡等复杂环境造成红花机械化采摘识别不准问题,该研究提出一种基于YOLOv7的改进模型,制作红花样本数据集建立真实采摘的复杂环境数据,增加Swin Transformer注意力机制提高模型对各分类样本的检测... 针对光照、遮挡、密集以及样本数量不均衡等复杂环境造成红花机械化采摘识别不准问题,该研究提出一种基于YOLOv7的改进模型,制作红花样本数据集建立真实采摘的复杂环境数据,增加Swin Transformer注意力机制提高模型对各分类样本的检测精准率,改进Focal Loss损失函数提升多分类任务下不均衡样本的识别率。经试验,改进后的模型各类别样本的检测平均准确率达到88.5%,与改进前相比提高了7个百分点,不均衡类别样本平均精度提高了15.9个百分点,与其他模型相比,检测平均准确率与检测速度均大幅提升。改进后的模型可以准确地实现对红花的检测,模型参数量小,识别速度快,适合在红花采摘机械上进行迁移部署,可为红花机械化实时采摘研究提供技术支持。 展开更多
关键词 图像识别 图像处理 复杂环境 yolov7 注意力机制 多分类Focal Loss损失函数 红花采摘
下载PDF
基于改进 YOLOv7 的煤矿带式输送机异物识别 被引量:16
2
作者 毛清华 李世坤 +2 位作者 胡鑫 薛旭升 姚丽杰 《工矿自动化》 北大核心 2022年第12期26-32,共7页
带式输送机煤流中会掺杂锚杆、角铁、木条、矸石、大块煤等异物,易导致输送带撕裂、转接处堵塞甚至断带。针对带式输送机巡检机器人难以在井下光照不均及带式输送机高速运行环境中高效、准确识别异物及模型部署不便等问题,以及YOLOv7模... 带式输送机煤流中会掺杂锚杆、角铁、木条、矸石、大块煤等异物,易导致输送带撕裂、转接处堵塞甚至断带。针对带式输送机巡检机器人难以在井下光照不均及带式输送机高速运行环境中高效、准确识别异物及模型部署不便等问题,以及YOLOv7模型对目标特征提取能力高,但识别速度较慢的特点,提出了一种基于改进YOLOv7的煤矿带式输送机异物识别方法。运用限制对比度自适应直方图均衡化方法对采集的带式输送机监控图像进行增强,提高图像中物体轮廓的清晰度;对YOLOv7模型进行改进,通过在主干提取网络引入轻量化无参注意力机制,提高模型对图像复杂背景的抗干扰能力和对异物特征的提取能力,同时引入深度可分离卷积代替主干特征提取网络中的普通卷积,提高异物识别速度;使用TensorRT引擎将训练后的改进YOLOv7模型进行转换并部署在NVIDIA Jetson Xavier NX上,实现了模型的加速。对煤矿井下分辨率为1920×1080的带式输送机监控视频进行识别,实验结果表明:改进YOLOv7模型的识别效果优于YOLOv5L和YOLOv7模型,识别精确率达92.8%,识别速度为25.64帧/s,满足精确、高效识别带式输送机异物的要求。 展开更多
关键词 带式输送机 异物识别 yolov7 无参注意力机制 深度可分离卷积 TensorRT
下载PDF
基于优选YOLOv7模型的采摘机器人多姿态火龙果检测系统 被引量:12
3
作者 王金鹏 周佳良 +1 位作者 张跃跃 胡皓若 《农业工程学报》 EI CAS CSCD 北大核心 2023年第8期276-283,共8页
为了检测复杂自然环境下多种生长姿态的火龙果,该研究基于优选YOLOv7模型提出一种多姿态火龙果检测方法,构建了能区分不同姿态火龙果的视觉系统。首先比较了不同模型的检测效果,并给出不同设备的建议模型。经测试,YOLOv7系列模型优于YOL... 为了检测复杂自然环境下多种生长姿态的火龙果,该研究基于优选YOLOv7模型提出一种多姿态火龙果检测方法,构建了能区分不同姿态火龙果的视觉系统。首先比较了不同模型的检测效果,并给出不同设备的建议模型。经测试,YOLOv7系列模型优于YOLOv4、YOLOv5和YOLOX的同量级模型。适用于移动设备的YOLOv7-tiny模型的检测准确率为83.6%,召回率为79.9%,平均精度均值(mean average precision,mAP)为88.3%,正视角和侧视角火龙果的分类准确率为80.4%,推理一张图像仅需1.8 ms,与YOLOv3-tiny、YOLOv4-tiny和YOLOX-tiny相比准确率分别提高了16.8、4.3和4.8个百分点,mAP分别提高了7.3、21和3.9个百分点,与EfficientDet、SSD、Faster-RCNN和CenterNet相比mAP分别提高了8.2、5.8、4.0和42.4个百分点。然后,该研究对不同光照条件下的火龙果进行检测,结果表明在强光、弱光、人工补光条件下均保持着较高的精度。最后将基于YOLOv7-tiny的火龙果检测模型部署到Jetson Xavier NX上并针对正视角火龙果进行了验证性采摘试验,结果表明检测系统的推理分类时间占完整采摘动作总时间的比例约为22.6%,正视角火龙果采摘成功率为90%,验证了基于优选YOLOv7的火龙果多姿态检测系统的性能。 展开更多
关键词 深度学习 卷积神经网络 采摘机器人 yolov7 目标检测 火龙果
下载PDF
基于改进YOLOv7的X线图像旋转目标检测 被引量:9
4
作者 成浪 敬超 《图学学报》 CSCD 北大核心 2023年第2期324-334,共11页
针对X线图像违禁品目标检测中存在的识别定位困难以及忽略物品方向性的问题,提出了一种基于改进YOLOv7的X线图像旋转目标检测算法。首先,通过在原网络中融合高效注意力机制模块提高模型对深层重要特征的提取能力;然后,改进扩展的高效长... 针对X线图像违禁品目标检测中存在的识别定位困难以及忽略物品方向性的问题,提出了一种基于改进YOLOv7的X线图像旋转目标检测算法。首先,通过在原网络中融合高效注意力机制模块提高模型对深层重要特征的提取能力;然后,改进扩展的高效长程注意力机制的特征融合路径,在模块之间增加跳跃连接和1×1卷积架构,使网络提取更丰富的物品特征;最后,针对X线图像中违禁品放置方向任意的问题,使用密集编码标签表示法对角度进行离散化处理,提高违禁品定位的准确性。实验结果表明,改进的算法在HiXray,OPIXray和PIDray数据集上分别取得了91.2%,92.6%和66.4%的检测精度,较原YOLOv7模型分别提高了20.2%,10.6%和15.5%,在有效提高X线图像违禁品检测精度的基础上,为保障公共安全提供了很好的技术支持。 展开更多
关键词 旋转目标检测 注意力机制 X线图像 yolov7 违禁品
下载PDF
融合注意力机制的YOLOv7遥感小目标检测算法研究 被引量:8
5
作者 余俊宇 刘孙俊 许桃 《计算机工程与应用》 CSCD 北大核心 2023年第20期167-175,共9页
针对遥感目标检测而言,因其主要是分布密集的小目标从而导致在检测过程中存在漏检误检的情况,其次在检测中还会受目标尺度差异显著和检测背景复杂带来的影响,因此提出一种改进YOLOv7的目标检测方法。通过结合全局语义信息与局部语义信... 针对遥感目标检测而言,因其主要是分布密集的小目标从而导致在检测过程中存在漏检误检的情况,其次在检测中还会受目标尺度差异显著和检测背景复杂带来的影响,因此提出一种改进YOLOv7的目标检测方法。通过结合全局语义信息与局部语义信息的思想,利用集中特征金字塔CFP(centralized feature pyramid)解决遥感图像因目标分布密集以及检测背景复杂导致检测效率较低的问题;针对遥感图像中的小目标分布不定并且其特征表现能力不足从而在检测过程中容易存在漏检、误检的现象,因此,通过引入混合注意力模块ACmix加强网络对于小目标检测的敏感度,以提升对小目标的检测精度;使用WIOU损失函数来优化原网络中的损失函数,提升网络对检测目标的定位能力。在公开的遥感数据中进行实验对比,改进后的网络对于三个检测目标飞机、油罐、操场的mAP分别提升了0.068、0.061、0.098,实验结果表明,在检测背景复杂,检测目标密集分布的情况下,改进的YOLOv7网络性能有所提升。 展开更多
关键词 遥感图像 目标检测 小目标 损失函数 yolov7
下载PDF
基于改进YOLOv7模型的复杂环境下鸭蛋识别定位 被引量:8
6
作者 祝志慧 何昱廷 +3 位作者 李沃霖 蔡紫荆 王巧华 马美湖 《农业工程学报》 EI CAS CSCD 北大核心 2023年第11期274-285,共12页
在干扰、遮挡等复杂环境下,对鸭蛋进行快速、准确识别定位是开发鸭蛋拾取机器人的关键技术,该研究提出一种基于改进YOLOv7(you only look once)模型的复杂环境鸭蛋检测方法,在主干网络加入卷积注意力模块(CBAM,convolutional block atte... 在干扰、遮挡等复杂环境下,对鸭蛋进行快速、准确识别定位是开发鸭蛋拾取机器人的关键技术,该研究提出一种基于改进YOLOv7(you only look once)模型的复杂环境鸭蛋检测方法,在主干网络加入卷积注意力模块(CBAM,convolutional block attention module),加强网络信息传递,提高模型对特征的敏感程度,减少复杂环境对鸭蛋识别干扰;利用深度可分离卷积(DSC,depthwise separable convolution)、调整空间金字塔池化结构(SPP,spatial pyramid pooling),降低模型参数数量和运算成本。试验结果表明,与SSD、YOLOv4、YOLOv5_M以及YOLOv7相比,改进YOLOv7模型的F1分数(F1 score)分别提高了8.3、10.1、8.7和7.6个百分点,F1分数达95.5%,占内存空间68.7 M,单张图片检测平均用时0.022 s。与不同模型在复杂环境的检测对比试验表明,改进的YOLOv7模型,在遮挡、簇拥、昏暗等复杂环境下,均能对鸭蛋进行准确快速的识别定位,具有较强鲁棒性和适用性。该研究可为后续开发鸭蛋拾取机器人提供技术支撑。 展开更多
关键词 图像处理 目标检测 yolov7 深度学习 鸭蛋 复杂环境
下载PDF
基于Flexible YOLOv7的输电线路绝缘子缺陷检测和故障预警方法 被引量:8
7
作者 宋智伟 黄新波 +1 位作者 纪超 张烨 《高电压技术》 EI CAS CSCD 北大核心 2023年第12期5084-5094,共11页
电力设备的平稳运行是保障居民生产生活的重要前提。输电线路绝缘子缺陷尺寸较小,传统的目标检测算法通常难以识别到缺陷目标,误检、漏检率较高。针对不同材质绝缘子缺陷检测存在目标过小、遮挡、背景复杂等难题,提出了一种基于Flexible... 电力设备的平稳运行是保障居民生产生活的重要前提。输电线路绝缘子缺陷尺寸较小,传统的目标检测算法通常难以识别到缺陷目标,误检、漏检率较高。针对不同材质绝缘子缺陷检测存在目标过小、遮挡、背景复杂等难题,提出了一种基于Flexible YOLOv7的绝缘子缺陷检测算法。该算法继承了YOLOv7网络的E-ELAN结构、Rep重参数化和辅助训练策略,并且在特征提取的过程中集成GAM注意力机制以放大显著的跨维度接受区域,通过高效的Ghost SPPCSPC结构减少模型训练过程中的参数冗余,引入Efficient IOU Loss重点关注高质量的anchors提升原始模型的检测精度。最后通过图像后处理技术对绝缘子缺陷进行等级划分与精细计算,并结合算法部署开发了绝缘子缺陷故障检测系统用于故障的提前预警。实验结果表明,该算法在密集目标、遮挡、小目标缺陷检测中的平均准确率AP、召回率Recall、相关指标F1指标均领先于当前先进的几类目标检测算法,在复杂环境下的绝缘子缺陷检测和故障预警方面具有一定的现实意义。 展开更多
关键词 绝缘子缺陷检测 Flexible yolov7 GAM注意力机制 Efficient IOU Loss 图像后处理技术 输电线路故障预警
下载PDF
基于改进YOLOv7的毛虾捕捞渔船作业目标检测与计数方法 被引量:8
8
作者 孙月莹 陈俊霖 +3 位作者 张胜茂 王书献 熊瑛 樊伟 《农业工程学报》 EI CAS CSCD 北大核心 2023年第10期151-162,共12页
渔船捕捞信息量化是开展限额捕捞精细化管理的前提,为解决中国毛虾限额捕捞目标识别和信息统计量化问题,研究了在中国毛虾限额捕捞渔船上安装电子监控(electronic monitoring,EM)设备,并基于YOLOv7提出一种改进的目标检测算法(YOLOv7-MO... 渔船捕捞信息量化是开展限额捕捞精细化管理的前提,为解决中国毛虾限额捕捞目标识别和信息统计量化问题,研究了在中国毛虾限额捕捞渔船上安装电子监控(electronic monitoring,EM)设备,并基于YOLOv7提出一种改进的目标检测算法(YOLOv7-MO)和目标计数算法(YOLOv7-MO-SORT)。YOLOv7-MO目标检测算法采用MobileOne作为主干网络,在输出端head部分加入C3模块,并完成剪枝操作;YOLOv7-MO-SORT目标计数算法将SORT(simple online and realtime tracking)算法中的Fast R-CNN替换为YOLOv7-MO,用于检测捕捞作业中抛出的锚和装有毛虾的筐。采用卡尔曼滤波和匈牙利匹配算法对检测到的目标进行跟踪预测,设置碰撞检测线、时间戳、阈值和计数器,实现对捕捞作业过程中渔获毛虾筐数和下网数量计数。结果表明:1)改进后的YOLOv7-MO在测试集上的平均检测精度、召回率、F1得分分别达到了97.3%,96.0%,96.6%,相比YOLOv7模型分别提升了2.0、1.1和1.5个百分点。2)改进后的YOLOv7-MO模型大小、参数量和浮点运算数分别为64.0 MB、32.6 M、39.7 G,相比YOLOv7模型分别缩小了10.2%、10.6%和61.6%。3)以YOLOv7-MO为检测器的SORT算法毛虾捕捞作业计数准确率在统计毛虾筐数和下网数量上分别达到80.0%和95.8%。YOLOv7-MO在提高检测精度的同时减轻了模型量级,提高了检测效率。结果表明,该研究能够为实现渔船捕捞作业信息记录自动化和智能化提供方法,为毛虾限额捕捞管理提供决策参考依据。 展开更多
关键词 机器视觉 目标检测 中国毛虾 限额捕捞 电子监控系统 yolov7 SORT
下载PDF
改进YOLOv7的小样本钢板表面缺陷检测算法 被引量:7
9
作者 窦智 胡晨光 +1 位作者 李庆华 郑李明 《计算机工程与应用》 CSCD 北大核心 2023年第23期283-292,共10页
钢板制造行业有其领域特殊性,伤痕类型较多,次品数量极少,且对检测性能要求较高,传统的缺陷检测算法无法达到行业要求。此外,行业数据公开率极低,缺少足够的训练样本使得深度学习难以应用于该领域。为解决上述问题,提出一种小样本驱动... 钢板制造行业有其领域特殊性,伤痕类型较多,次品数量极少,且对检测性能要求较高,传统的缺陷检测算法无法达到行业要求。此外,行业数据公开率极低,缺少足够的训练样本使得深度学习难以应用于该领域。为解决上述问题,提出一种小样本驱动的训练样本生成方法,可在保证样本多样性和真实性的前提下生成大规模样本,使得深度网络的训练具备可行性。同时,提出一种基于改进YOLOv7的钢板缺陷检测算法。对YOLOv7网络模型中的ELAN模块进行了优化,增强网络对重要特征的提取能力;使用ACmix注意力模块提高网络对小目标的关注度,有效解决原网络模型对小目标的漏检问题;引入WIoU替换原网络模型中CIoU来优化损失函数,提升目标定位性能。实验结果表明:已成功将改进的YOLOv7应用于小样本钢板缺陷检测,检测性能具有较为明显的优势,且高于行业要求。 展开更多
关键词 智能制造 缺陷检测 小样本 yolov7 注意力机制 损失函数
下载PDF
重构SPPCSPC与优化下采样的小目标检测算法 被引量:7
10
作者 齐向明 柴蕊 高一萌 《计算机工程与应用》 CSCD 北大核心 2023年第20期158-166,共9页
针对小目标图像检测中存在相互遮挡、背景复杂和特征点少的问题,基于YOLOv7提出一种重构SPPCSPC与优化下采样的小目标检测算法。在骨干网络的SPPCSPC模块中裁剪CBS层、引入SimAM注意力机制并缩小池化核,以提高关注密集目标区域,提取更... 针对小目标图像检测中存在相互遮挡、背景复杂和特征点少的问题,基于YOLOv7提出一种重构SPPCSPC与优化下采样的小目标检测算法。在骨干网络的SPPCSPC模块中裁剪CBS层、引入SimAM注意力机制并缩小池化核,以提高关注密集目标区域,提取更多相互遮挡的小目标特征;在颈部网络中,将下采样结构中的SConv替换为SPD Conv,再添加一个四倍下采样分支,以减少小目标特征丢失,提高复杂背景下小目标特征捕获量;把网络模型的损失函数由CIoU替换为Wise IoU,聚焦一般质量瞄框,提升收敛速度。在公开数据集VisDrone2021上做对比实验和消融实验,该算法与原始YOLOv7算法相比,mAP提升5.09个百分点,FPS值达到40,参数量减少2.5 MB,表明小目标检测精度显著提升,同时保持了推理速度并减少了参数量;在公开数据集VOC2007+2012上做泛化实验,mAP提升3.35个百分点,表明该算法具有通用性。 展开更多
关键词 小目标检测 重构SPPCSPC 优化下采样 Wise IoU yolov7
下载PDF
改进YOLOv7的复杂道路场景目标检测算法 被引量:4
11
作者 杜娟 崔少华 +1 位作者 晋美娟 茹琛 《计算机工程与应用》 CSCD 北大核心 2024年第1期96-103,共8页
虽然基于深度学习的目标检测算法在道路场景中的目标检测方面已经取得了很好的效果,但是对于复杂道路场景中的密集目标,远处的小尺度目标检测精度低,容易出现漏检误检的问题,提出一种改进YOLOv7的复杂道路场景目标检测算法。增加小目标... 虽然基于深度学习的目标检测算法在道路场景中的目标检测方面已经取得了很好的效果,但是对于复杂道路场景中的密集目标,远处的小尺度目标检测精度低,容易出现漏检误检的问题,提出一种改进YOLOv7的复杂道路场景目标检测算法。增加小目标检测层,增加对小目标的特征学习能力;采用K-means++重聚类先验框,使得先验框更贴合目标,增加网络对目标的定位精度;采用WIoU(Wise-IoU)损失函数,增加网络对普通质量锚框的关注度,提高网络对目标的定位能力;在颈部和检测头引入协调坐标卷积(CoordConv),使网络能够更好地感受特征图中的位置信息;提出P-ELAN结构对骨干网络进行轻量化处理,降低算法参数量和运算量。实验结果表明,该改进算法在华为SODA10M数据集下的mAP达到64.8%,比原算法提高2.6个百分点,模型参数量和运算量分别降低12%和7%,达到检测精度和检测速度的平衡。 展开更多
关键词 yolov7 道路目标检测 CoordConv K-means++ 轻量化
下载PDF
改进YOLOv7的交通标志检测算法 被引量:6
12
作者 石镇岳 侯婷 苏勇东 《计算机系统应用》 2023年第10期157-165,共9页
自动驾驶技术的快速发展,导致对交通标志检测技术的要求日益提高.为解决YOLOv7算法在识别小目标时误检、漏检等问题,本文提出一种基于注意力机制的交通标志检测模型YOLOv7-PC.首先通过K-means++聚类算法对交通标志数据集进行聚类,获得... 自动驾驶技术的快速发展,导致对交通标志检测技术的要求日益提高.为解决YOLOv7算法在识别小目标时误检、漏检等问题,本文提出一种基于注意力机制的交通标志检测模型YOLOv7-PC.首先通过K-means++聚类算法对交通标志数据集进行聚类,获得适用于检测交通标志的锚框;其次在YOLOv7主干特征提取网络中引入坐标注意力机制,将交通标志的横向和纵向信息嵌入到通道中,使生成的特征信息具有交通标志的坐标信息,加强有效特征的提取;最后在加强特征提取网络中引入空洞空间金字塔池化,捕获交通标志多尺度上下文信息,在保证交通标志小目标分辨率的同时,进一步扩大卷积的感受野.在中国交通标志检测数据集(CCTSDB)上的实验表明,本文算法增强了识别小目标的能力,相较于YOLOv7模型,本文算法的mAP、召回率平均分别提高了5.22%、9.01%,是一种有效的交通标志检测算法. 展开更多
关键词 目标检测 交通标志识别 yolov7 注意力机制 空洞卷积 深度学习
下载PDF
改进YOLOv7的SAR舰船检测算法 被引量:5
13
作者 肖振久 林渤翰 曲海成 《计算机工程与应用》 CSCD 北大核心 2023年第15期243-252,共10页
为了解决合成孔径雷达(synthetic aperture radar,SAR)图像中小目标舰船和复杂背景下舰船检测精度低的问题,并使模型更加轻量化,提出了一种改进YOLOv7的SAR舰船检测算法。在YOLOv7主干网络构建REPPConv-ELAN模块替换原ELAN,减少网络的... 为了解决合成孔径雷达(synthetic aperture radar,SAR)图像中小目标舰船和复杂背景下舰船检测精度低的问题,并使模型更加轻量化,提出了一种改进YOLOv7的SAR舰船检测算法。在YOLOv7主干网络构建REPPConv-ELAN模块替换原ELAN,减少网络的计算量和内存占用,加快推理速度,同时增强网络对目标特征的提取能力;在特征融合部分融入ConvNeXt Block加速网络提取和融合复杂目标的特征信息;再把全局注意力机制(GAM)加入至下采样阶段,构建一种用来捕捉全局特征的采样模块(MP-GAM),在通道维度和空间维度上进行特征捕捉和特征融合,实现多维信息的交互,提高网络对复杂背景下舰船的关键特征捕捉能力;在检测头的回归损失函数处引入新度量NWD替换IoU,增强对小目标的检测能力。在HRSID数据集上进行了实验对比,改进后的方法相比于YOLOv7,模型的参数量和计算量显著减少;AP值提升了10.04个百分点,准确率提升了3.61个百分点,召回率提升了15.15个百分点。与目前的主流算法对比,精度明显提高。实验结果表明,改进算法能有效提升SAR舰船检测精度,显著改善复杂舰船的误检和漏检情况。 展开更多
关键词 SAR图像 舰船检测 yolov7 部分卷积 全局注意力机制 NWD度量 ConvNeXt Block
下载PDF
探地雷达多特征融合的城市空洞自动识别方法 被引量:5
14
作者 杜豫川 岳光华 +2 位作者 刘成龙 李峰 蔡文才 《中国公路学报》 EI CAS CSCD 北大核心 2023年第3期108-119,共12页
探地雷达发射的电磁波容易受外部环境干扰,城市中复杂的地下市政设施进一步增加了空洞的识别难度,目前利用时域振幅特征图不能全面反映空洞病害的结构和介电参数,自动识别时容易出现误判和漏判。为了能够充分利用探地雷达信号中的多维信... 探地雷达发射的电磁波容易受外部环境干扰,城市中复杂的地下市政设施进一步增加了空洞的识别难度,目前利用时域振幅特征图不能全面反映空洞病害的结构和介电参数,自动识别时容易出现误判和漏判。为了能够充分利用探地雷达信号中的多维信息,提升城市空洞自动识别的精度和效率,考虑提取反射信号特定时刻的振幅、频率和相位特征,通过特征融合解译改善空洞的识别精度。首先使用希尔伯特变换将信号从时域转换为时频域,在时频域计算得到特定瞬间的振幅图(IA)、频率图(IF)和相位图(IP),建立包含原始特征图(OP)的4个单特征数据集;然后基于二维小波变换的方法分别将IA+IF、IA+IP、IF+IP、IA+IF+IP融合,其中图像的高频部分采用最大值融合规则,低频部分采用均值融合策略,建立4个特征融合数据集;最后使用YOLOv7算法在8个数据下进行训练,对比研究模型的性能。结果表明:在IA+IP和IA+IF+IP数据集下训练的模型,相比OP数据集下性能均有所提升,其中IA+IP数据下训练的模型表现出最佳的性能,相比OP数据集模型的精确率提升5.0%,召回率提升7.6%,F1值提升7.8%,AP_0.5提升5.9%。该方法可以刻画空洞病害处除振幅强度值外蕴藏的其他细节信息,强化信号在空洞病害位置处的反射特征,进而提升病害处信号特征的辨别能力。 展开更多
关键词 道路工程 自动识别 特征融合 城市空洞 希尔伯特变换 yolov7
原文传递
基于cosSTR-YOLOv7的多尺度遥感小目标检测 被引量:2
15
作者 张徐 朱正为 +2 位作者 郭玉英 刘辉 仲慧 《电光与控制》 CSCD 北大核心 2024年第4期28-34,共7页
针对地理空间遥感图像存在目标分布密集、尺度变化范围较大及小目标特征信息过少等而造成目标检测精度不高的问题,提出了一种基于Swin Transformer(STR)和YOLOv7的多尺度遥感小目标检测算法cosSTR-YOLOv7。以YOLOv7作为基线网络,首先,使... 针对地理空间遥感图像存在目标分布密集、尺度变化范围较大及小目标特征信息过少等而造成目标检测精度不高的问题,提出了一种基于Swin Transformer(STR)和YOLOv7的多尺度遥感小目标检测算法cosSTR-YOLOv7。以YOLOv7作为基线网络,首先,使用STR模块替换主干网络中的E-ELAN模块,并利用余弦注意力机制和后正则化方法将其改进为cosSTR模块,以提升模型训练的稳定性;其次,在Neck部分构建新的特征融合层,以减少特征信息丢失;然后,在预测部分增加小目标预测层,以提升模型对小目标的检测能力;最后,采用新的SIoU损失函数计算定位损失,以加快模型收敛速度。利用遥感数据集DIOR进行实验,实验结果表明,所提算法平均精度均值(mAP)达到92.63%,对比原YOLOv7算法提高了3.73个百分点,对多尺度小目标的检测性能有显著提高。 展开更多
关键词 遥感图像 小目标检测 多尺度特征 yolov7 Swin Transformer
下载PDF
基于改进YOLOv7的油茶果实成熟度检测 被引量:2
16
作者 陈锋军 陈闯 +2 位作者 朱学岩 沈德宇 张新伟 《农业工程学报》 EI CAS CSCD 北大核心 2024年第5期177-186,共10页
为确保油茶果实处于最佳成熟度进行采摘,提高油茶果实的出油率及茶油品质,该研究针对自然环境下油茶果实多被遮挡的问题,以原始YOLOv7模型为基础进行改进,提出一种油茶果实成熟度检测方法。首先,在主干网络中引入十字交叉注意力机制(cri... 为确保油茶果实处于最佳成熟度进行采摘,提高油茶果实的出油率及茶油品质,该研究针对自然环境下油茶果实多被遮挡的问题,以原始YOLOv7模型为基础进行改进,提出一种油茶果实成熟度检测方法。首先,在主干网络中引入十字交叉注意力机制(criss-cross attention,CCA)加强对被枝叶遮挡果实成熟度特征的提取能力;其次,使用基于距离和交并比的非极大值抑制(distance-iou non-maximum suppression,DIoU-NMS)算法代替传统非极大值抑制(nonmaximum suppression,NMS)算法,从而加强模型对相互遮挡果实的检测能力;最后,以训练集中3 098张油茶果实图像训练改进的YOLOv7模型,验证集中442张图像用于在训练过程中评估模型,并对测试集中885张图像进行测试。改进后的YOLOv7模型在测试集下的精确率P为93.52%,召回率R为90.25%,F1分数为91.86%,平均精度均值mAP为94.60%,平均检测时间为0.77 s,模型权重大小为82.6 M。与Faster R-CNN、EfficientDet、YOLOv3、YOLOv5l和原始YOLOv7模型相比,平均精度均值mAP分别提升7.51、5.89、4.21、4.21和2.91个百分点。试验证明,改进的YOLOv7模型为实现油茶果实的智能化采摘提供理论依据。 展开更多
关键词 图像识别 模型 油茶果实 成熟度检测 yolov7 注意力机制 DIoU-NMS
下载PDF
基于改进YOLOv7的湖面漂浮物目标检测算法 被引量:2
17
作者 徐宏伟 李然 张家旭 《现代电子技术》 北大核心 2024年第1期105-110,共6页
为提高湖面多种类和小体积的漂浮垃圾检测识别的准确度与推理检测速度,结合湖面垃圾漂浮物的图像特征,采用半结构化剪枝技术创建X-Toss剪枝框架,并基于YOLOv7目标检测模型,提出一种轻量化湖面漂浮物实时检测方法C-X-YOLOv7。X-Toss剪枝... 为提高湖面多种类和小体积的漂浮垃圾检测识别的准确度与推理检测速度,结合湖面垃圾漂浮物的图像特征,采用半结构化剪枝技术创建X-Toss剪枝框架,并基于YOLOv7目标检测模型,提出一种轻量化湖面漂浮物实时检测方法C-X-YOLOv7。X-Toss剪枝框架使用DFS算法生成父子卷积核计算图,利用特定的内核模式剪枝卷积核,降低迭代剪枝的计算成本。融合CA注意力机制对模型进行加权,减少模型过拟合现象,提高模型准确性和泛化能力。结果表明:对湖面垃圾检测识别,C-X-YOLOv7模型识别准确率为91.7%,召回率为91.2%,与YOLOv7模型对比分别提升2.6%、2.5%;推理加速度上,X-Toss剪枝框架在RTX 2080 Ti与NVIDIA Jetson TX2上分别实现YOLOv7的1.98×和2.17×的加速比,相较于PD、NMS、NS等剪枝框架,X-Toss的推理加速比和能耗均有提升。研究表明C-X-YOLOv7湖面漂浮物检测方法为湖面垃圾检测识别提供了一种新思路。 展开更多
关键词 目标检测 yolov7 剪枝技术 半结构化剪枝 DFS算法 注意力机制 推理加速比 湖面漂浮物
下载PDF
基于改进YOLOv7模型的柑橘表面缺陷在线检测 被引量:3
18
作者 贾雪莹 赵春江 +5 位作者 周娟 王庆艳 梁晓婷 何鑫 黄文倩 张驰 《农业工程学报》 EI CAS CSCD 北大核心 2023年第23期142-151,共10页
柑橘表面缺陷是水果检测分级的重要依据,针对传统柑橘表面缺陷检测方法效率低、精度低等问题,该研究提出一种柑橘表面缺陷的实时检测方法。该方法首先对柑橘图像进行图像增强,然后利用提出的YOLOv7-CACT模型对柑橘表面缺陷进行检测,该... 柑橘表面缺陷是水果检测分级的重要依据,针对传统柑橘表面缺陷检测方法效率低、精度低等问题,该研究提出一种柑橘表面缺陷的实时检测方法。该方法首先对柑橘图像进行图像增强,然后利用提出的YOLOv7-CACT模型对柑橘表面缺陷进行检测,该模型在YOLOv7模型骨干网络中引入坐标注意力模块(coordinate attention,CA),从而提高模型对缺陷部分的关注度。在网络头部引入CT(contextual transformer,CT)模块,融合静态和动态上下文表征特征,从而增强缺陷部分特征表达能力。通过试验确定CA模块和CT模块的最佳位置。改进后的YOLOv7-CACT模型检测结果平均精度均值(mean average precision,mAP)相较于原始模型增加了4.1个百分点,达到91.1%,满足了实际生产中对柑橘缺陷检测精度的要求。最后将基于YOLOv7-CACT的柑橘检测模型通过TensorRT进行部署,试验结果表明模型的推理时间满足柑橘生产线10个/s的实时分选要求,总体的检测精度达到94.4%,为柑橘表面缺陷在线检测提供了一种精准的实时检测方法。 展开更多
关键词 无损检测 柑橘 表面缺陷 yolov7 深度学习 注意力机制 TensorRT
下载PDF
基于改进YOLOv7的苹果叶片病害检测研究 被引量:3
19
作者 王泽伟 郭福涛 宋莉莉 《智慧农业导刊》 2023年第12期1-4,共4页
苹果叶片病害检测对苹果生产至关重要,为达到病害检测精度,对YOLOv7算法进行改进。首先用C3网络层替换部分ELAN层,使模型在简化的同时具有较好的精确度。其次在YOLOv7的Head部分的MP层加入SimAM注意力机制,提高网络的分类能力。最后,结... 苹果叶片病害检测对苹果生产至关重要,为达到病害检测精度,对YOLOv7算法进行改进。首先用C3网络层替换部分ELAN层,使模型在简化的同时具有较好的精确度。其次在YOLOv7的Head部分的MP层加入SimAM注意力机制,提高网络的分类能力。最后,结合知识蒸馏理论,使用训练的大模型指导改进后的模型进行学习,进一步提高模型的识别精度。使用苹果叶片数据集测试所设计的模型,其mAP结果为92.29%。实验显示,该文设计的模型对YOLOv7的苹果叶片病害识别能力有较大提升,与当前主流算法相比,具有一定的先进性。 展开更多
关键词 农业病害 yolov7 注意力机制 知识蒸馏 深度学习
下载PDF
改进YOLOv7的煤岩图像检测算法 被引量:1
20
作者 赵艳芹 邓虎诚 《黑龙江科技大学学报》 CAS 2024年第1期157-162,共6页
针对现阶段煤岩图像检测识别中精度和模型规模难以平衡的问题,提出了一种通过替换部分普通卷积模块来改进YOLOv7网络结构的煤岩图像检测算法。通过引入卷积核为7的卷积模块ConvNeXt来替换普通的3×3大小卷积模块,提升煤炭特征获得... 针对现阶段煤岩图像检测识别中精度和模型规模难以平衡的问题,提出了一种通过替换部分普通卷积模块来改进YOLOv7网络结构的煤岩图像检测算法。通过引入卷积核为7的卷积模块ConvNeXt来替换普通的3×3大小卷积模块,提升煤炭特征获得效果。利用SimAM注意力机制,替换1×1大小卷积模块,给出MP_SAM模块,使算法提取更丰富的目标信息,运用αIoU优化损失函数,使之更适用于清晰度不够高的煤岩图像,增强算法的泛化能力。结果表明,与YOLOv7算法相比,该算法的准确率提升了3.9%,mAP提升了1.5%,模型整体FLOPs减少了0.7 G,通过更小的模型,获得了更好的检测结果。 展开更多
关键词 煤岩检测 yolov7 SimAM ConvNeXt αIoU
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部