Abstract There are many soft-rock roadway coal mines in China. The surrounding rocks of the high-stress soft-rock roadways in deep mine are especially difficult to be supported using the traditional supporting way. In...Abstract There are many soft-rock roadway coal mines in China. The surrounding rocks of the high-stress soft-rock roadways in deep mine are especially difficult to be supported using the traditional supporting way. In this study, the south wing rail roadway on the second level of Yunjialing coal mine in China was used as an example to analyze the deformation and failure characteristics and influencing factors of roadway. On this basis, this study proposed the equalized yielding support idea which employs the yielding rings to realize the pressure equalization on the bolts and cables in the section. To achieve this purpose, the first bolt-mesh-cable equalizing pressure yielding support was integrated with the second grouting reinforcement. The results proved that the yield rings of the bolts and cables on the spandrel of the arched roadway firstly developed yielding deformation; then the deformation extended to the vault of the roadway; the bolts and cables achieved a yielding extreme value of 15 and 18 tonnes, respectively. The roadway surrounding rock tended to be stable at the 26th day after the maintenance. The equalizing pressure yielding supporting technology plays a moderate pressure-releasing and actively controlling role on the surrounding rocks in the soft-rock roadway with large deformation.展开更多
A new type of ultra-lightweight metallic lattice structure (named as the X-type structure) is reported. This periodic structure was formed by two groups of staggered struts in the traditional pyramid structure, and fa...A new type of ultra-lightweight metallic lattice structure (named as the X-type structure) is reported. This periodic structure was formed by two groups of staggered struts in the traditional pyramid structure, and fabricated by folding expanded metal sheet along rows of offset nodes and then brazing the folded structure (as the core) with top and bottom facesheets to form sandwich panels. The out-of-plane compressive and shear properties of the X-type lattice sandwich structure were investigated experimentally and compared to those of the sandwich having a pyramidal truss core. It is found that the formation of the 2-dimensional staggered nodes can effectively make the X-type structure more resistant to inelastic and plastic buckling under both compression and shear loading than the pyramidal lattice truss. Obtained results show that the compressive and shear peak strengths of the X-type lattice structure are about 30% higher than those of the pyramidal lattice truss having the same relative density.展开更多
In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With su...In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With such methods as numerical simulation and field testing, the distribution law of the displacement, stress and plastic zone in the surrounding rocks was analyzed. The deformation and failure mechanisms of coal roadways in deep tectonic areas were revealed: under high tectonic stress, two sides will slide along the roof or floor; while the plastic zone of the two sides will extend along the roof or floor,leading to more serious deformation and failure in the corner of two sides and the bolt supporting the corners is readily cut off by the shear force or tension force. Aimed at controlling the large slippage deformation of the two sides, serious deformation and failure in the corners of the two sides and massive bolt breakage, a ‘‘controlling and yielding coupling support'' control technology is proposed. Firstly, bolts which do not pass through the bedding plane should be used in the corners of the roadway, allowing the two sides to have some degree of sliding to achieve the purpose of ‘‘yielding'' support, and which avoid breakage of the bolts in the corner. After yielding support, bolts in the corner of the roadway and which pass through the bedding plane should be used to control the deformation and failure of the coal in the corner. ‘‘Controlling and yielding coupling support'' technology has been successfully applied in engineering practice, and the stability of deep coal roadway has been greatly improved.展开更多
Plant phenotyping technologies play important roles in plant research and agriculture.Detailed phenotypes of individual plants can guide the optimization of shoot architecture for plant breeding and are useful to anal...Plant phenotyping technologies play important roles in plant research and agriculture.Detailed phenotypes of individual plants can guide the optimization of shoot architecture for plant breeding and are useful to analyze the morphological differences in response to environments for crop cultivation.Accordingly,high-throughput phenotyping technologies for individual plants grown in field conditions are urgently needed,and MVS-Pheno,a portable and low-cost phenotyping platform for individual plants,was developed.The platform is composed of four major components:a semiautomatic multiview stereo(MVS)image acquisition device,a data acquisition console,data processing and phenotype extraction software for maize shoots,and a data management system.The platform’s device is detachable and adjustable according to the size of the target shoot.Image sequences for each maize shoot can be captured within 60-120 seconds,yielding 3D point clouds of shoots are reconstructed using MVS-based commercial software,and the phenotypic traits at the organ and individual plant levels are then extracted by the software.The correlation coefficient(R^(2))between the extracted and manually measured plant height,leaf width,and leaf area values are 0.99,0.87,and 0.93,respectively.A data management system has also been developed to store and manage the acquired raw data,reconstructed point clouds,agronomic information,and resulting phenotypic traits.The platform offers an optional solution for high-throughput phenotyping of field-grown plants,which is especially useful for large populations or experiments across many different ecological regions.展开更多
Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination ...Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models.展开更多
It is difficult to maintain the roadway around a fault because of the fractured surroundings, complex stress environment, and large and intense deformation in the mining process. Based on a tailgate of panel $2205 in ...It is difficult to maintain the roadway around a fault because of the fractured surroundings, complex stress environment, and large and intense deformation in the mining process. Based on a tailgate of panel $2205 in Tunliu colliery, in Shanxi province, China, we investigated the evolution of stress and displace- ment of rocks surrounding the roadway during the drivage and mining period using theoretical analysis, numerical simulation and field trial methods. We analyzed the deformation and failure mechanisms of the tailgate near a fault. The deformation of surrounding rock caused by unloading in the drivage period is large and asymmetric, the roadway convergence increases with activation of the fault and secondary fracture develops in the mining period. Therefore, we proposed a specific control technique of the road- way along a fault as follows: (1) High-strength yielding bolt not only supports the shallow rock to load- bearing structures, but also releases primary deformation energy by use of a pressure release device in order to achieve high resistance to the pressure retained: (2) Grouting of near-fault ribside after initial stabilization of the rock deformation is used to reinforce the broken rock, and to improve the integral load-bearing capacity ol~ the roadway. The research results were successfully applied to a field trial.展开更多
The martensitic hot-rolled 0.3 C-6 Mn-1.5 Si(wt%)steel was annealed at 630℃for 24 h to improve its cold rollability,followed by cold rolling and annealing at 670℃for 10 min.The annealing process was designed based o...The martensitic hot-rolled 0.3 C-6 Mn-1.5 Si(wt%)steel was annealed at 630℃for 24 h to improve its cold rollability,followed by cold rolling and annealing at 670℃for 10 min.The annealing process was designed based on the capacities of industrial batch annealing and continuous annealing lines.A duplex submicron austenite and ferrite microstructure and excellent tensile properties were obtained finally,proved the above process is feasible."Austenite memory"was found in the hot-rolled and annealed sample which restricted recrystallization of lath martensite,leading to lath-shaped morphology of austenite and ferrite grains."Austenite memory"disappeared in the cold-rolled and annealed sample due to austenite random nucleation and ferrite recrystallization,resulting in globular microstructure and refinement of both austenite and ferrite grains.The austenite to martensite transformation contributed most of strain hardening during deformation and improved the uniform elongation,but the dislocation strengthening played a decisive role on the yielding behavior.The tensile curves change from continuous to discontinuous yielding as the increase of cold-rolled reduction due to the weakening dislocation strengthening of austenite and ferrite grains related to the morphology change and grain refinement.A method by controlling the cold-rolled reduction is proposed to avoid the Lüders strain.展开更多
In order to ensure the safety and stability of the soft rock roadway under high stress, based on the char- acteristics of the surrounding rock deformation and failure, this paper presented the support technology“coup...In order to ensure the safety and stability of the soft rock roadway under high stress, based on the char- acteristics of the surrounding rock deformation and failure, this paper presented the support technology“coupling support of double yielding shell”, then gave the design method of inner and outer shells and analyzed the principle and requirements of the support technology by taking the -850 meast belt mad-way of Qujiang coal mine as the background. The field application results show that the support technol- ogy can control the soft rock roadway deformation better under high stress. The displacement between roadway sides was 851 mm, the displacement of the roof was 430 mm, and the displacement of the floor was 510 mm.展开更多
文摘Abstract There are many soft-rock roadway coal mines in China. The surrounding rocks of the high-stress soft-rock roadways in deep mine are especially difficult to be supported using the traditional supporting way. In this study, the south wing rail roadway on the second level of Yunjialing coal mine in China was used as an example to analyze the deformation and failure characteristics and influencing factors of roadway. On this basis, this study proposed the equalized yielding support idea which employs the yielding rings to realize the pressure equalization on the bolts and cables in the section. To achieve this purpose, the first bolt-mesh-cable equalizing pressure yielding support was integrated with the second grouting reinforcement. The results proved that the yield rings of the bolts and cables on the spandrel of the arched roadway firstly developed yielding deformation; then the deformation extended to the vault of the roadway; the bolts and cables achieved a yielding extreme value of 15 and 18 tonnes, respectively. The roadway surrounding rock tended to be stable at the 26th day after the maintenance. The equalizing pressure yielding supporting technology plays a moderate pressure-releasing and actively controlling role on the surrounding rocks in the soft-rock roadway with large deformation.
基金Supported by the National Basic Research Program of China ("973" Project) (Grant No. 2006CB601202)the National Natural Science Foundation of China (Grant Nos. 10632060,10825210)+1 种基金the National "111" Project of China (Grant No. B06024)the National High-Tech Research and Development Program of China ("863" Project) (Grant No. 2006AA03Z519)
文摘A new type of ultra-lightweight metallic lattice structure (named as the X-type structure) is reported. This periodic structure was formed by two groups of staggered struts in the traditional pyramid structure, and fabricated by folding expanded metal sheet along rows of offset nodes and then brazing the folded structure (as the core) with top and bottom facesheets to form sandwich panels. The out-of-plane compressive and shear properties of the X-type lattice sandwich structure were investigated experimentally and compared to those of the sandwich having a pyramidal truss core. It is found that the formation of the 2-dimensional staggered nodes can effectively make the X-type structure more resistant to inelastic and plastic buckling under both compression and shear loading than the pyramidal lattice truss. Obtained results show that the compressive and shear peak strengths of the X-type lattice structure are about 30% higher than those of the pyramidal lattice truss having the same relative density.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No. 51204166)the Henan Polytechnic University Doctor Foundation (No. B2012-081)
文摘In order to effectively control the deformation and failure of surrounding rocks in a coal roadway in a deep tectonic region, the deformation and failure mechanism and stability control mechanism were studied. With such methods as numerical simulation and field testing, the distribution law of the displacement, stress and plastic zone in the surrounding rocks was analyzed. The deformation and failure mechanisms of coal roadways in deep tectonic areas were revealed: under high tectonic stress, two sides will slide along the roof or floor; while the plastic zone of the two sides will extend along the roof or floor,leading to more serious deformation and failure in the corner of two sides and the bolt supporting the corners is readily cut off by the shear force or tension force. Aimed at controlling the large slippage deformation of the two sides, serious deformation and failure in the corners of the two sides and massive bolt breakage, a ‘‘controlling and yielding coupling support'' control technology is proposed. Firstly, bolts which do not pass through the bedding plane should be used in the corners of the roadway, allowing the two sides to have some degree of sliding to achieve the purpose of ‘‘yielding'' support, and which avoid breakage of the bolts in the corner. After yielding support, bolts in the corner of the roadway and which pass through the bedding plane should be used to control the deformation and failure of the coal in the corner. ‘‘Controlling and yielding coupling support'' technology has been successfully applied in engineering practice, and the stability of deep coal roadway has been greatly improved.
基金This research was funded by the Construction of Collaborative Innovation Center of Beijing Academy of Agricultural and Forestry Sciences(KJCX201917)the National Natural Science Foundation of China(31871519 and 31601215)+1 种基金the Modern Agro-Industry Technology Research System of Maize(CARS-02-87)the Construction of Scientific Research and Innovation Platform in Beijing Academy of Agricultural and Forestry Sciences(Digital Plant).
文摘Plant phenotyping technologies play important roles in plant research and agriculture.Detailed phenotypes of individual plants can guide the optimization of shoot architecture for plant breeding and are useful to analyze the morphological differences in response to environments for crop cultivation.Accordingly,high-throughput phenotyping technologies for individual plants grown in field conditions are urgently needed,and MVS-Pheno,a portable and low-cost phenotyping platform for individual plants,was developed.The platform is composed of four major components:a semiautomatic multiview stereo(MVS)image acquisition device,a data acquisition console,data processing and phenotype extraction software for maize shoots,and a data management system.The platform’s device is detachable and adjustable according to the size of the target shoot.Image sequences for each maize shoot can be captured within 60-120 seconds,yielding 3D point clouds of shoots are reconstructed using MVS-based commercial software,and the phenotypic traits at the organ and individual plant levels are then extracted by the software.The correlation coefficient(R^(2))between the extracted and manually measured plant height,leaf width,and leaf area values are 0.99,0.87,and 0.93,respectively.A data management system has also been developed to store and manage the acquired raw data,reconstructed point clouds,agronomic information,and resulting phenotypic traits.The platform offers an optional solution for high-throughput phenotyping of field-grown plants,which is especially useful for large populations or experiments across many different ecological regions.
文摘Designing reliable yielding support system to mitigate the effect of the kinetic energy in burst-prone conditions in mining and tunneling excavations is one of the challenges for geotechnical engineers. A combination of the support elements can be used to increase rock strength and minimise the displacement of unstable rock mass. It is important to understand how the support system works to ensure the stability of underground excavations. Cable bolts have been commonly used as an effective underground support system and an element of reinforcement to improve rock stability. Cable bolts are usually considered to be subjected to static loads under relatively low stress environments, however, in burst-prone conditions, they might be subjected to dynamic loads. Cable bolts as well as other support elements are used in burst-prone conditions to absorb the kinetic energy of the removed rock to avoid sudden and violent failures. This paper develops numerical and a novel analytical simulation technique for cable bolts to assess their structural behaviour under static and dynamic loading conditions. The numerical and analytical models are then validated against experimental observations reported in the literature, which demonstrates the reliability of the proposed models.
基金provided by the National Natural Science Foundation of China (No. 51174195)the State Key Laboratory of Coal Resources and Mine Safety(No. SKLCRSM08X04)+1 种基金the Science Foundation for Youth of China University of Mining &Technology (No. 2008A02)supported by China Scholarship Council for High-Level University Program (No.CSC[2010] 3006)
文摘It is difficult to maintain the roadway around a fault because of the fractured surroundings, complex stress environment, and large and intense deformation in the mining process. Based on a tailgate of panel $2205 in Tunliu colliery, in Shanxi province, China, we investigated the evolution of stress and displace- ment of rocks surrounding the roadway during the drivage and mining period using theoretical analysis, numerical simulation and field trial methods. We analyzed the deformation and failure mechanisms of the tailgate near a fault. The deformation of surrounding rock caused by unloading in the drivage period is large and asymmetric, the roadway convergence increases with activation of the fault and secondary fracture develops in the mining period. Therefore, we proposed a specific control technique of the road- way along a fault as follows: (1) High-strength yielding bolt not only supports the shallow rock to load- bearing structures, but also releases primary deformation energy by use of a pressure release device in order to achieve high resistance to the pressure retained: (2) Grouting of near-fault ribside after initial stabilization of the rock deformation is used to reinforce the broken rock, and to improve the integral load-bearing capacity ol~ the roadway. The research results were successfully applied to a field trial.
基金financially supported by the National Natural Science Foundation of China(Grant No.51722402)by the Fundamental Research Funds for the Central Universities(Grant No.2007012)+1 种基金111 Project(No.B16009)the Liaoning Revitalization Talents Program(No.XLYC1907128)。
文摘The martensitic hot-rolled 0.3 C-6 Mn-1.5 Si(wt%)steel was annealed at 630℃for 24 h to improve its cold rollability,followed by cold rolling and annealing at 670℃for 10 min.The annealing process was designed based on the capacities of industrial batch annealing and continuous annealing lines.A duplex submicron austenite and ferrite microstructure and excellent tensile properties were obtained finally,proved the above process is feasible."Austenite memory"was found in the hot-rolled and annealed sample which restricted recrystallization of lath martensite,leading to lath-shaped morphology of austenite and ferrite grains."Austenite memory"disappeared in the cold-rolled and annealed sample due to austenite random nucleation and ferrite recrystallization,resulting in globular microstructure and refinement of both austenite and ferrite grains.The austenite to martensite transformation contributed most of strain hardening during deformation and improved the uniform elongation,but the dislocation strengthening played a decisive role on the yielding behavior.The tensile curves change from continuous to discontinuous yielding as the increase of cold-rolled reduction due to the weakening dislocation strengthening of austenite and ferrite grains related to the morphology change and grain refinement.A method by controlling the cold-rolled reduction is proposed to avoid the Lüders strain.
基金supported by the National Natural Science Foundation for Youth (No. 51304200)the China Postdoctoral Science Foundation Project (No. 2013M540477)
文摘In order to ensure the safety and stability of the soft rock roadway under high stress, based on the char- acteristics of the surrounding rock deformation and failure, this paper presented the support technology“coupling support of double yielding shell”, then gave the design method of inner and outer shells and analyzed the principle and requirements of the support technology by taking the -850 meast belt mad-way of Qujiang coal mine as the background. The field application results show that the support technol- ogy can control the soft rock roadway deformation better under high stress. The displacement between roadway sides was 851 mm, the displacement of the roof was 430 mm, and the displacement of the floor was 510 mm.