Long-lasting phosphor Y2O2S : Eu^3+ , Mg^2+ , Ti^4+ was synthesized by a flux method and their luminescence properties were investigated. The result indicates that the unit cell parameter c is linearly increased w...Long-lasting phosphor Y2O2S : Eu^3+ , Mg^2+ , Ti^4+ was synthesized by a flux method and their luminescence properties were investigated. The result indicates that the unit cell parameter c is linearly increased with the increase of Eu2O3 content in Y2O2S: Eu^3+ (0.01 ≤ x ≤0.10). On the other hand, the change of unit cell parameter a is not linear dependence. In the Y2O2S: Eu^3 + crystal structure, Eu^3+ ions only replaced Y^3 + ions' places in which it posited center position of c axis. With the increase of Eu2O3 content, the position of the strongest emission peak changed from 540 nm (5D1→^ 7F2 transition) to 626 nm (^5Do→^7TF2 transition), and the maximum intensity was obtained when x = 0.09 in Y2O2S: Eu^3+ (0.01 ≤x ≤0.10). This is due to the environment of trivalent europium in the crystal structure of Y2O2S. Doping with Mg^2+ or Ti^4+. ions alone cannot get the good long-lasting afterglow effect, whereas co-doping with Mg^2 + and Ti^4 + ions and excited with 365 nm ultraviolet light, a strong thermoluminesence peak appeared, red and orange long-lasting phosphorescence (LLP) was also observed and the phosphorescence lasted nearly 3 h in the light perception of the dark-adapted human eye (0.32 mcd·m^-2). Thus the LLP mechanism was analyzed.展开更多
As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent ...As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.展开更多
In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+), which were the common three primary colors materials ...In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+), which were the common three primary colors materials with long afterglow, were synthesized by high temperature solid state method. The blends of rare earth(RE) luminescent materials have been of interest to reinvest the luminescent characteristics of polyethylene terephtahalate(PET) luminous fiber. The scanning electron microscopy(SEM) and an inversion fluorescence microscope were used to characterize the surface morphology and the dispersion of inclusion. Through analysis of microcosmic morphology, three typical dispersions of luminescent particles were summarized. The X-ray diffraction indicated that the phase structure of fiber samples and crystal structure of luminescence materials kept complete after prilling and spinning. From the fluorescence spectra and CIE 1931 coordinates, it could be found that different combinations of luminous fibers were desired to obtain divers colors emission luminous fiber. And the fiber samples were a light sensation which could induct different excitation wavelengths and convert it down to different colors. The afterglow decay curve and its differential curve were summarized indicating the three decay stages. The decay curve and decay rate curve showed that the contents of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+) had obvious influence on the afterglow of fiber samples.展开更多
After trace Sm^3+ ions and Gd^3+ ions doping, the emission intensity of red phosphors Y2O2S: Eu^3 + was enhanced and the voltage character (relation between emission intensity and excitation voltage) was improve...After trace Sm^3+ ions and Gd^3+ ions doping, the emission intensity of red phosphors Y2O2S: Eu^3 + was enhanced and the voltage character (relation between emission intensity and excitation voltage) was improved while the other properties of physics and chemistry were not changed. The origins of enhancement and improvement are discussed. Probably the distortion and the defect of crystals are decreased by the substitution of Gd^3+ for Y^3+ instead of Eu^3+ for Y^3+ , and thus the Eu^3+ crystal field is improved, and radiationless process and energy loss resulted from crystal defect are weakened, which leads to increased luminescence intensity and voltage character improvement. The overlapping fluorescent spectra of Y2O2S: Sm^3+ emission and Y2O2S:Eu^3+ excitation as well as Eu^3 + excitation spectra transitions spectra lead to energy transfer from Sm^3 + sensitization of Sm^3+ ions fectively. containing Sm^3+ excitation the possibility of resonance ions to Eu^3+ ions, and the to Eu^3+ ions is achieved effectively.展开更多
As a kind of non-destructive testing method,magnetic particle inspection is widely used in the fields of aviation and high-speed rail.The properties of magnetic fluorescent bifunctional composites,such as fluorescence...As a kind of non-destructive testing method,magnetic particle inspection is widely used in the fields of aviation and high-speed rail.The properties of magnetic fluorescent bifunctional composites,such as fluorescence intensity and magnetic properties,have increasing demands in magnetic particle inspection.Rare earth compounds offer potential as novel materials for fluorescent magnetic bifunctional composites due to their excellent optical properties and extremely narrow emission spectra.In this work,the rare earth fluorescent material Y_(2)O_(2)S:Eu^(3+) was synthesized by solid-state reaction method.Fe_(3)O_(4)nanoparticles prepared by hydrothermal method were uniformly coated on the Y_(2)O_(2)S:Eu^(3+) particles through physical adsorption of surfactants.The obtained Fe_(3)O_(4)@Y_(2)O_(2)S:Eu^(3+) exhibits dark red color under the ultraviolet light.In additio n,X-ray diffractio n,morphology,photoluminescence and hyste resis loop of Fe_(3)O_(4)@Y_(2)O_(2)S:Cu^(3+) were investigated.The luminescence mechanism of Y_(2)O_(2)S:Eu^(3+) is described in detail Fe_(3)O_(4)@Y_(2)O_(2)S:Cu^(3+) displays good paramagnetism and has a good controllability under a magnetic field.The magnetic particle inspection of Fe_(3)O_(4)@Y_(2)O_(2)S:Eu^(3+) was performed using a 4-pole electromagnet and a test piece shim.The magnetic fluorescent bifunctional composite presented in this work can be applied for non-destructive testing.展开更多
文摘Long-lasting phosphor Y2O2S : Eu^3+ , Mg^2+ , Ti^4+ was synthesized by a flux method and their luminescence properties were investigated. The result indicates that the unit cell parameter c is linearly increased with the increase of Eu2O3 content in Y2O2S: Eu^3+ (0.01 ≤ x ≤0.10). On the other hand, the change of unit cell parameter a is not linear dependence. In the Y2O2S: Eu^3 + crystal structure, Eu^3+ ions only replaced Y^3 + ions' places in which it posited center position of c axis. With the increase of Eu2O3 content, the position of the strongest emission peak changed from 540 nm (5D1→^ 7F2 transition) to 626 nm (^5Do→^7TF2 transition), and the maximum intensity was obtained when x = 0.09 in Y2O2S: Eu^3+ (0.01 ≤x ≤0.10). This is due to the environment of trivalent europium in the crystal structure of Y2O2S. Doping with Mg^2+ or Ti^4+. ions alone cannot get the good long-lasting afterglow effect, whereas co-doping with Mg^2 + and Ti^4 + ions and excited with 365 nm ultraviolet light, a strong thermoluminesence peak appeared, red and orange long-lasting phosphorescence (LLP) was also observed and the phosphorescence lasted nearly 3 h in the light perception of the dark-adapted human eye (0.32 mcd·m^-2). Thus the LLP mechanism was analyzed.
基金Supported by the Project of the Combination of Industry and Research by the Ministry of Education of China and Guang-dong Province, China(No.0712226100023)
文摘As an Hg-free lamp using phosphor, the Bi^3+ and EH^3+ co-doped Y2O2S phosphors were prepared and their luminescence properties under vacuum ultraviolet(VUV) excitation were investigated. The VUV photoluminescent intensity of Y2O2S:Eu^3+ was weak, however, considerably stronger red emission at 626 nm with good color purity was observed in Y2O2S:Eu^3+,Bi^3+ systems. Investigation on the photoluminescence reveals that the strong VUV luminescence of Y2O2S:Eu^3+,Bi^3+ at 147 nm is mainly because the Bi^3+ acts as a medium and effectively performs the energy transfer process: Y^3+-O^2-→Bi^3+→Eu^3+, while the intense emission band at 172 nm is attributed to the absorption of the characteristic ^1So-^1P1 transition of Bi^3+ and the direct energy transfer from Bi^3+ to Eu^3+. The Y2O2S:Eu^3+,Bi^3+ shows excellent VUV optical properties compared with the commercial (Y,Gd)BO3:Eu^3+. Thus, the Y2O2S:Eu^3+,Bi^3+ can be a potential red VUV-excited candidate applied in Hg-free lamps for backlight of liquid crystal display.
基金Project supported by the National Natural Science Foundation of China(51503082)the Fundamental Research Funds for the Central Universities(JUSRP51505,JUSRP116020)Jiangsu Province Ordinary University Academic Degree Graduate Student Scientific Research Innovation Projects(KYLX16-0791)
文摘In this study, down-conversion fluorescent powder of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+), which were the common three primary colors materials with long afterglow, were synthesized by high temperature solid state method. The blends of rare earth(RE) luminescent materials have been of interest to reinvest the luminescent characteristics of polyethylene terephtahalate(PET) luminous fiber. The scanning electron microscopy(SEM) and an inversion fluorescence microscope were used to characterize the surface morphology and the dispersion of inclusion. Through analysis of microcosmic morphology, three typical dispersions of luminescent particles were summarized. The X-ray diffraction indicated that the phase structure of fiber samples and crystal structure of luminescence materials kept complete after prilling and spinning. From the fluorescence spectra and CIE 1931 coordinates, it could be found that different combinations of luminous fibers were desired to obtain divers colors emission luminous fiber. And the fiber samples were a light sensation which could induct different excitation wavelengths and convert it down to different colors. The afterglow decay curve and its differential curve were summarized indicating the three decay stages. The decay curve and decay rate curve showed that the contents of Sr2ZnSi2O7:Eu-(2+),Dy-(3+), SrAl2O4:Eu-(2+),Dy-(3+) and Y2O2S:Eu-(3+),Mg-(2+),Ti-(4+) had obvious influence on the afterglow of fiber samples.
文摘After trace Sm^3+ ions and Gd^3+ ions doping, the emission intensity of red phosphors Y2O2S: Eu^3 + was enhanced and the voltage character (relation between emission intensity and excitation voltage) was improved while the other properties of physics and chemistry were not changed. The origins of enhancement and improvement are discussed. Probably the distortion and the defect of crystals are decreased by the substitution of Gd^3+ for Y^3+ instead of Eu^3+ for Y^3+ , and thus the Eu^3+ crystal field is improved, and radiationless process and energy loss resulted from crystal defect are weakened, which leads to increased luminescence intensity and voltage character improvement. The overlapping fluorescent spectra of Y2O2S: Sm^3+ emission and Y2O2S:Eu^3+ excitation as well as Eu^3 + excitation spectra transitions spectra lead to energy transfer from Sm^3 + sensitization of Sm^3+ ions fectively. containing Sm^3+ excitation the possibility of resonance ions to Eu^3+ ions, and the to Eu^3+ ions is achieved effectively.
基金supported by the National Natural Science Foundation of China (51927810)。
文摘As a kind of non-destructive testing method,magnetic particle inspection is widely used in the fields of aviation and high-speed rail.The properties of magnetic fluorescent bifunctional composites,such as fluorescence intensity and magnetic properties,have increasing demands in magnetic particle inspection.Rare earth compounds offer potential as novel materials for fluorescent magnetic bifunctional composites due to their excellent optical properties and extremely narrow emission spectra.In this work,the rare earth fluorescent material Y_(2)O_(2)S:Eu^(3+) was synthesized by solid-state reaction method.Fe_(3)O_(4)nanoparticles prepared by hydrothermal method were uniformly coated on the Y_(2)O_(2)S:Eu^(3+) particles through physical adsorption of surfactants.The obtained Fe_(3)O_(4)@Y_(2)O_(2)S:Eu^(3+) exhibits dark red color under the ultraviolet light.In additio n,X-ray diffractio n,morphology,photoluminescence and hyste resis loop of Fe_(3)O_(4)@Y_(2)O_(2)S:Cu^(3+) were investigated.The luminescence mechanism of Y_(2)O_(2)S:Eu^(3+) is described in detail Fe_(3)O_(4)@Y_(2)O_(2)S:Cu^(3+) displays good paramagnetism and has a good controllability under a magnetic field.The magnetic particle inspection of Fe_(3)O_(4)@Y_(2)O_(2)S:Eu^(3+) was performed using a 4-pole electromagnet and a test piece shim.The magnetic fluorescent bifunctional composite presented in this work can be applied for non-destructive testing.