Based on meteorologic data in Xixi Watershed from 1972 to 1979, the SWAT model was applied to simulate the response of runoff and sediment yield in Xixi Watershed to climate change under 24 kinds of climate change sce...Based on meteorologic data in Xixi Watershed from 1972 to 1979, the SWAT model was applied to simulate the response of runoff and sediment yield in Xixi Watershed to climate change under 24 kinds of climate change scenarios, and then the spatial and temporal distribution of change rates of the runoff and sediment were analyzed. The results showed that the runoff yield would increase with the increase of precipitation or decrease of temperature, and the sediment yield would increase with the increase of precipitation or increase of temperature; the runoff would be more sensitive to variations in precipitation than to variations in temperature, and precipitation change would lead to more obvious change in the run- off yield; the temporal distribution of change rates of the runoff and sediment yield would be uneven in the 12 months, and the variation trends of the two change rates in the 12 months would be accordant; the spatial distribution of change rates of the runoff and sediment yield would be uneven in the sub-watersheds, and the change rate of the runoff yield would be bigger in the sub-watersheds where the runoff yield in the basic period would be smaller. This study can provide decision-making basis for sustainable development of Jinjiang Basin.展开更多
[目的]对晋江西溪流域不同子流域的产沙情况进行模拟与分析,并模拟单一土地利用类型对输沙量的影响,为晋江流域水资源质量改善提供科学支撑。[方法]构建流域月产沙的HSPF(hydrological simulation program in fortran)模型,分析实际情...[目的]对晋江西溪流域不同子流域的产沙情况进行模拟与分析,并模拟单一土地利用类型对输沙量的影响,为晋江流域水资源质量改善提供科学支撑。[方法]构建流域月产沙的HSPF(hydrological simulation program in fortran)模型,分析实际情况下的产沙情况,模拟园地、耕地和林地3种不同极端土地利用情景对流域输沙量的影响。[结果]①月泥沙的相关系数(R 2)、Nash-Suttcliffe效率系数(Ens)、相对误差(R e)在率定期分别为0.849,0.789和-5.720%,在验证期分别为0.836,0.837和10.790%,模型具有较高的精度;②年平均产沙量较高的地区主要分布在园地和耕地比例相对较高区域;③从年尺度上看,园地、耕地和林地情景的输沙量与基期相比变化情况分别为23.56%,20.39%和-17.42%。从月尺度上看,所有情景在丰水期的输沙量都大于枯水期,其中5月和7月3种土地利用情景的输沙量表现为:耕地>园地>林地,6月和8月3种土地利用情景的输沙量表现为:园地>耕地>林地;④山地茶果园不合理开发和坡耕地比重较大且没有采取合适的水土保持措施是园地和耕地情景年输沙量上升的主要原因,林地遭受破坏且林种结构不合理是林地情景降低输沙量有限的主要原因。[结论]HSPF模型在流域输沙量模拟中具有较高精度;研究区园地和耕地导致输沙量上升,林地可降低输沙量但降低幅度有限。展开更多
The SWAT model was applied to analyze the temporal-spatial distribution patterns of non-point source pollution loads and the difference of pollution loads of different land use types in Xixi Watershed of Jinjiang Basi...The SWAT model was applied to analyze the temporal-spatial distribution patterns of non-point source pollution loads and the difference of pollution loads of different land use types in Xixi Watershed of Jinjiang Basin. The results showed that both yearly nitrogen and phosphorus pollution loads were evenly distributed during 1973 to 1979,the annual TN pollution from non-point source was 1530 t,or 6. 3 kg / ha,and the annual TP pollution from non-point source was 270 t,or 1. 1 kg / ha during 1973 to 1979 in the watershed. Considerable differences were identified on both monthly nitrogen and phosphorus pollution loads. The TN and TP pollution loads during the flood season( from April to September) accounted for 76. 2% and 75. 8% of the annual load respectively. There were great differences in both TN and TP pollution loads of different land use types in the study area,and the pollution load of both farmland and orchard was higher than that of the other land use types. TN and TP pollution loads of farmland accounted for 66% and 83% of total watershed. There was a great spatial difference in the nonpoint source pollution load of the study area. The critical source areas of non-point source pollution are mainly located at Guanqiao Town,Longmen Town,Changkeng Town,Shangqing Town and Dapu Town,where the efforts of controlling pollution should be made.展开更多
Six evaluation factors were selected to evaluate the susceptibility level of the Xixi Watershed to geological disasters such as collapse and landslide, namely formation lithology, rainfall, gradient, aspect, vegetatio...Six evaluation factors were selected to evaluate the susceptibility level of the Xixi Watershed to geological disasters such as collapse and landslide, namely formation lithology, rainfall, gradient, aspect, vegetation and buffer zone. The results showed that Longmen Town, Gongqiao Town, Lianhua Town, and Chengxiang Town in the lower reaches of the Xixi Watershed were more susceptible to geological disasters in case of rainstorm because of the easily-collapsed formation lithology; riverbank erosion by runoff was enhanced during rainstorm, thus both sides of the rivers in Chengxiang Town at the estuary of the Xixi Watershed were most susceptible to geological disasters; in case of rainstorm, geological disaster monitoring in location areas of Longmen Town, Guanqiao Town, Lianhua Town, Chengxiang Town in the lower reaches, particularly trunk streams in Chengxiang Town, should be enhanced. By evaluating environmental geo-disasters of the Xixi Watershed, the blank in the environmental geo-disaster evaluation of the local area will be filled in, and scientific support will be provided for the future prevention of environmental geodisaster.展开更多
基金Supported by the Science and Technology Development Plan Project of Binzhou City(Policy Guidance)(2013ZC1001)Scientific Research Foundation of Binzhou University(BZXYG1414)+1 种基金Key Science and Technology Project for the Control of Major Safety Production Accidents in 2015 of State Administration of Work Safety(Shandong-0052-2015AQ)Project for Experimental Techniques of Binzhou University(BZXYSYXM201207)
文摘Based on meteorologic data in Xixi Watershed from 1972 to 1979, the SWAT model was applied to simulate the response of runoff and sediment yield in Xixi Watershed to climate change under 24 kinds of climate change scenarios, and then the spatial and temporal distribution of change rates of the runoff and sediment were analyzed. The results showed that the runoff yield would increase with the increase of precipitation or decrease of temperature, and the sediment yield would increase with the increase of precipitation or increase of temperature; the runoff would be more sensitive to variations in precipitation than to variations in temperature, and precipitation change would lead to more obvious change in the run- off yield; the temporal distribution of change rates of the runoff and sediment yield would be uneven in the 12 months, and the variation trends of the two change rates in the 12 months would be accordant; the spatial distribution of change rates of the runoff and sediment yield would be uneven in the sub-watersheds, and the change rate of the runoff yield would be bigger in the sub-watersheds where the runoff yield in the basic period would be smaller. This study can provide decision-making basis for sustainable development of Jinjiang Basin.
文摘[目的]对晋江西溪流域不同子流域的产沙情况进行模拟与分析,并模拟单一土地利用类型对输沙量的影响,为晋江流域水资源质量改善提供科学支撑。[方法]构建流域月产沙的HSPF(hydrological simulation program in fortran)模型,分析实际情况下的产沙情况,模拟园地、耕地和林地3种不同极端土地利用情景对流域输沙量的影响。[结果]①月泥沙的相关系数(R 2)、Nash-Suttcliffe效率系数(Ens)、相对误差(R e)在率定期分别为0.849,0.789和-5.720%,在验证期分别为0.836,0.837和10.790%,模型具有较高的精度;②年平均产沙量较高的地区主要分布在园地和耕地比例相对较高区域;③从年尺度上看,园地、耕地和林地情景的输沙量与基期相比变化情况分别为23.56%,20.39%和-17.42%。从月尺度上看,所有情景在丰水期的输沙量都大于枯水期,其中5月和7月3种土地利用情景的输沙量表现为:耕地>园地>林地,6月和8月3种土地利用情景的输沙量表现为:园地>耕地>林地;④山地茶果园不合理开发和坡耕地比重较大且没有采取合适的水土保持措施是园地和耕地情景年输沙量上升的主要原因,林地遭受破坏且林种结构不合理是林地情景降低输沙量有限的主要原因。[结论]HSPF模型在流域输沙量模拟中具有较高精度;研究区园地和耕地导致输沙量上升,林地可降低输沙量但降低幅度有限。
基金Supported by Key Technology Project of State Administration of Work Safety Supervision for Prevention and Control of Major Safety Accidents in 2015(Shandong-0052-2015AQ)Shandong Natural Science Foundation(ZR20-14EEP009)+1 种基金Binzhou Science and Technology Development Program(2013ZC1001)Research Fund of Binzhou University(BZXYG1414)
文摘The SWAT model was applied to analyze the temporal-spatial distribution patterns of non-point source pollution loads and the difference of pollution loads of different land use types in Xixi Watershed of Jinjiang Basin. The results showed that both yearly nitrogen and phosphorus pollution loads were evenly distributed during 1973 to 1979,the annual TN pollution from non-point source was 1530 t,or 6. 3 kg / ha,and the annual TP pollution from non-point source was 270 t,or 1. 1 kg / ha during 1973 to 1979 in the watershed. Considerable differences were identified on both monthly nitrogen and phosphorus pollution loads. The TN and TP pollution loads during the flood season( from April to September) accounted for 76. 2% and 75. 8% of the annual load respectively. There were great differences in both TN and TP pollution loads of different land use types in the study area,and the pollution load of both farmland and orchard was higher than that of the other land use types. TN and TP pollution loads of farmland accounted for 66% and 83% of total watershed. There was a great spatial difference in the nonpoint source pollution load of the study area. The critical source areas of non-point source pollution are mainly located at Guanqiao Town,Longmen Town,Changkeng Town,Shangqing Town and Dapu Town,where the efforts of controlling pollution should be made.
基金Sponsored by 2015 Production Safety and Major Accident Prevention Technology Program of State Administration of Work Safety(Shandong-0052-2015AQ)Scientific Research Foundation of Binzhou University(BZXYG1414)+1 种基金Key Research and Development Program of Shandong Province(2015GNC111018)Natural Science Foundation of Shandong Province(ZR2014BP012)
文摘Six evaluation factors were selected to evaluate the susceptibility level of the Xixi Watershed to geological disasters such as collapse and landslide, namely formation lithology, rainfall, gradient, aspect, vegetation and buffer zone. The results showed that Longmen Town, Gongqiao Town, Lianhua Town, and Chengxiang Town in the lower reaches of the Xixi Watershed were more susceptible to geological disasters in case of rainstorm because of the easily-collapsed formation lithology; riverbank erosion by runoff was enhanced during rainstorm, thus both sides of the rivers in Chengxiang Town at the estuary of the Xixi Watershed were most susceptible to geological disasters; in case of rainstorm, geological disaster monitoring in location areas of Longmen Town, Guanqiao Town, Lianhua Town, Chengxiang Town in the lower reaches, particularly trunk streams in Chengxiang Town, should be enhanced. By evaluating environmental geo-disasters of the Xixi Watershed, the blank in the environmental geo-disaster evaluation of the local area will be filled in, and scientific support will be provided for the future prevention of environmental geodisaster.