For earthquakes(ML≥2.0) that occurred from January 2006 to October 2018 around the Ms5.7 Xingwen earthquake occurred on 16 December 2018 in Xingwen,Sichuan province,China,we statistically investigated the correlation...For earthquakes(ML≥2.0) that occurred from January 2006 to October 2018 around the Ms5.7 Xingwen earthquake occurred on 16 December 2018 in Xingwen,Sichuan province,China,we statistically investigated the correlation between the phase of Earth's rotation and the occurrence of earthquakes via Schuster's test to determine the signals that triggered earthquakes before the Ms5.7 Xingwen event.The results were evaluated based on the P-value where a smaller P-value corresponded to a higher correlation between the occurrence of an earthquake and Earth's rotation.We investigated the spatial distribution of Pvalues in the region around the epicenter of the Ms5.7 Xingwen event,and obtained a result exhibiting a extremely low-P-value region.The松5.7 event occurred inside near the northern boundary of this region.Furthermore,we analyzed the temporal evolution of P-values for earthquakes that occurred within the extremely low-P-value region and found that some extremely low P-values(less that 0.1%),i.e.,significant correlation,were calculated for earthquakes that occurred before the胚5.7 Xingwen earthquake.Among sixty・one earthquakes with the lowest P-value,occurred from May 2014 to April 2018,a vast majority of them occurred during the acceleration of Earth's rotation.The lower P-value obtained in this study reveals that the Xingwen source body probably was extremely unstable prior to the occurrence of the Ms5.7 Xingwen earthquake.展开更多
基金supported by National Key R&D Program of China (No. 2018YFC1503405)
文摘For earthquakes(ML≥2.0) that occurred from January 2006 to October 2018 around the Ms5.7 Xingwen earthquake occurred on 16 December 2018 in Xingwen,Sichuan province,China,we statistically investigated the correlation between the phase of Earth's rotation and the occurrence of earthquakes via Schuster's test to determine the signals that triggered earthquakes before the Ms5.7 Xingwen event.The results were evaluated based on the P-value where a smaller P-value corresponded to a higher correlation between the occurrence of an earthquake and Earth's rotation.We investigated the spatial distribution of Pvalues in the region around the epicenter of the Ms5.7 Xingwen event,and obtained a result exhibiting a extremely low-P-value region.The松5.7 event occurred inside near the northern boundary of this region.Furthermore,we analyzed the temporal evolution of P-values for earthquakes that occurred within the extremely low-P-value region and found that some extremely low P-values(less that 0.1%),i.e.,significant correlation,were calculated for earthquakes that occurred before the胚5.7 Xingwen earthquake.Among sixty・one earthquakes with the lowest P-value,occurred from May 2014 to April 2018,a vast majority of them occurred during the acceleration of Earth's rotation.The lower P-value obtained in this study reveals that the Xingwen source body probably was extremely unstable prior to the occurrence of the Ms5.7 Xingwen earthquake.