期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
针对数据缺失的电力系统暂态稳定评估方法 被引量:6
1
作者 张雅婷 刘颂凯 +3 位作者 张磊 刘聪 刘书池 崔梓琪 《电力系统及其自动化学报》 CSCD 北大核心 2023年第3期59-68,共10页
为解决量测数据缺失时电力系统暂态稳定评估模型泛化能力不足的问题,基于多向循环神经网络和XGBoost算法,提出一种针对数据缺失的电力系统暂态稳定评估方法。首先使用多向循环神经网络修复缺失数据;然后采用完整的数据集对XGBoost模型... 为解决量测数据缺失时电力系统暂态稳定评估模型泛化能力不足的问题,基于多向循环神经网络和XGBoost算法,提出一种针对数据缺失的电力系统暂态稳定评估方法。首先使用多向循环神经网络修复缺失数据;然后采用完整的数据集对XGBoost模型进行训练;最后基于SHAP理论量化不同输入特征对模型输出结果的影响。此外,还提出了一种模型更新机制,在系统工况发生改变时对模型进行持续更新。在新英格兰10机39节点系统上仿真结果表明,所提方法相较于传统方法具有更好的数据修复能力,能显著提高暂态稳定评估性能。 展开更多
关键词 缺失数据 暂态稳定安全 多向循环神经网络 xgboost算法 估计误差
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部