Vibrio cholerae(V. cholerae) genome is equipped with a number of integrative mobile genetic element(IMGE) like prophages, plasmids, transposons or genomic islands, which provides fitness factors that help the pathogen...Vibrio cholerae(V. cholerae) genome is equipped with a number of integrative mobile genetic element(IMGE) like prophages, plasmids, transposons or genomic islands, which provides fitness factors that help the pathogen to survive in changing environmental conditions. Metagenomic analyses of clinical and environmental V. cholerae isolates revealed that dimer resolution sites(dif) harbor several structurally and functionally distinct IMGEs. All IMGEs present in the dif region exploit chromosomally encoded tyrosine recombinases, Xer C and Xer D, for integration. Integration takes place due to site-specific recombination between two specific DNA sequences; chromosomal sequence is called att B and IMGEs sequence is called att P. Different IMGEs present in the att P region have different attP structure but all of them are recognized by Xer C and Xer D enzymes and mediate either reversible or irreversible integration. Cholera toxin phage(CTXΦ), a lysogenic filamentous phage carrying the cholera toxin genes ctx AB, deserves special attention because it provides V. cholerae the crucial toxin and is always present in the dif region of all epidemic cholera isolates. Therefore, understanding the mechanisms of integration and dissemination of CTXΦ, genetic and ecological factors which support CTXΦ integration as well as production of virion from chromosomally integrated phage genome and interactions of CTXΦ with other genetic elements present in the genomes of V. cholerae is important for learning more about the biology of cholera pathogen.展开更多
Genomic integration of genes and pathway-sized DNA cassettes is often an indispensable way to construct robust and productive microbial cell factories.For some uncommon microbial hosts,such as Mycolicibacterium and My...Genomic integration of genes and pathway-sized DNA cassettes is often an indispensable way to construct robust and productive microbial cell factories.For some uncommon microbial hosts,such as Mycolicibacterium and Mycobacterium species,however,it is a challenge.Here,we present a multiplexed integrase-assisted site-specific recombination(miSSR)method to precisely and iteratively integrate genes/pathways with controllable copies in the chromosomes of Mycolicibacteria for the purpose of developing cell factories.First,a single-step multi-copy integration method was established in M.neoaurum by a combination application of mycobacteriophage L5 integrase and two-step allelic exchange strategy,the efficiencies of which were~100%for no more than three-copy integration events and decreased sharply to~20%for five-copy integration events.Second,the R4,Bxb1 andΦC31 bacteriophage Att/Int systems were selected to extend the available integration toolbox for multiplexed gene integration events.Third,a reconstructed mycolicibacterial Xer recombinases(Xer-cise)system was employed to recycle the selection marker of gene recombination to facilitate the iterative gene manipulation.As a proof of concept,the biosynthetic pathway of ergothioneine(EGT)in Mycolicibacterium neoaurum ATCC 25795 was achieved by remodeling its metabolic pathway with a miSSR system.With six copies of the biosynthetic gene clusters(BGCs)of EGT and pentose phosphate isomerase(PRT),the titer of EGT in the resulting strain in a 30 mL shake flask within 5 days was enhanced to 66 mg/L,which was 3.77 times of that in the wild strain.The improvements indicated that the miSSR system was an effective,flexible,and convenient tool to engineer the genomes of Mycolicibacteria as well as other strains in the Mycobacteriaceae due to their proximate evolutionary relationships.展开更多
基金Supported by Research in the Laboratory of Das B and NairGB is funded in part by Department of Science Technology,No.SB/FT/LS-309/2012Government of India(GOI)and the Department of Biotechnology,No.BT/MB/THSTI/HMC-SFC/2011Research in the Laboratory of Bhadra RK is partly financiallysupported by Council of Scientific and Industrial Research,GOIand Indian Council of Medical Research,GOI
文摘Vibrio cholerae(V. cholerae) genome is equipped with a number of integrative mobile genetic element(IMGE) like prophages, plasmids, transposons or genomic islands, which provides fitness factors that help the pathogen to survive in changing environmental conditions. Metagenomic analyses of clinical and environmental V. cholerae isolates revealed that dimer resolution sites(dif) harbor several structurally and functionally distinct IMGEs. All IMGEs present in the dif region exploit chromosomally encoded tyrosine recombinases, Xer C and Xer D, for integration. Integration takes place due to site-specific recombination between two specific DNA sequences; chromosomal sequence is called att B and IMGEs sequence is called att P. Different IMGEs present in the att P region have different attP structure but all of them are recognized by Xer C and Xer D enzymes and mediate either reversible or irreversible integration. Cholera toxin phage(CTXΦ), a lysogenic filamentous phage carrying the cholera toxin genes ctx AB, deserves special attention because it provides V. cholerae the crucial toxin and is always present in the dif region of all epidemic cholera isolates. Therefore, understanding the mechanisms of integration and dissemination of CTXΦ, genetic and ecological factors which support CTXΦ integration as well as production of virion from chromosomally integrated phage genome and interactions of CTXΦ with other genetic elements present in the genomes of V. cholerae is important for learning more about the biology of cholera pathogen.
基金supported by the National Natural Science Foundation of China(No.21776075)the Natural Science Foundation of Shanghai(No.20ZR1415100)the National Key Research and Development Program of China(No.SQ2020YFC210061).
文摘Genomic integration of genes and pathway-sized DNA cassettes is often an indispensable way to construct robust and productive microbial cell factories.For some uncommon microbial hosts,such as Mycolicibacterium and Mycobacterium species,however,it is a challenge.Here,we present a multiplexed integrase-assisted site-specific recombination(miSSR)method to precisely and iteratively integrate genes/pathways with controllable copies in the chromosomes of Mycolicibacteria for the purpose of developing cell factories.First,a single-step multi-copy integration method was established in M.neoaurum by a combination application of mycobacteriophage L5 integrase and two-step allelic exchange strategy,the efficiencies of which were~100%for no more than three-copy integration events and decreased sharply to~20%for five-copy integration events.Second,the R4,Bxb1 andΦC31 bacteriophage Att/Int systems were selected to extend the available integration toolbox for multiplexed gene integration events.Third,a reconstructed mycolicibacterial Xer recombinases(Xer-cise)system was employed to recycle the selection marker of gene recombination to facilitate the iterative gene manipulation.As a proof of concept,the biosynthetic pathway of ergothioneine(EGT)in Mycolicibacterium neoaurum ATCC 25795 was achieved by remodeling its metabolic pathway with a miSSR system.With six copies of the biosynthetic gene clusters(BGCs)of EGT and pentose phosphate isomerase(PRT),the titer of EGT in the resulting strain in a 30 mL shake flask within 5 days was enhanced to 66 mg/L,which was 3.77 times of that in the wild strain.The improvements indicated that the miSSR system was an effective,flexible,and convenient tool to engineer the genomes of Mycolicibacteria as well as other strains in the Mycobacteriaceae due to their proximate evolutionary relationships.