期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Polygon-RefineNet的违禁品X线图像自动标注方法
1
作者
马博文
贾同
+1 位作者
刘益辄
滑心语
《计算机学报》
EI
CSCD
北大核心
2021年第2期395-408,共14页
近年来,随着深度学习的快速发展,其在智慧安检领域的应用已经成为了当下的研究热点.众所周知,深度学习方法是以海量训练数据为基础的,然而手工标注真值(ground truth)是一项十分繁琐的工作.为此,本文提出一种基于Polygon-RefineNet的违...
近年来,随着深度学习的快速发展,其在智慧安检领域的应用已经成为了当下的研究热点.众所周知,深度学习方法是以海量训练数据为基础的,然而手工标注真值(ground truth)是一项十分繁琐的工作.为此,本文提出一种基于Polygon-RefineNet的违禁品X线图像自动标注方法,该方法在用户设定的包含感兴趣区域的初始边框(bounding box)内自动预测出目标的多边形轮廓,旨在生成可用真值的情况下最大限度地减少标注时间.由于违禁品X线图像存在大量的重叠现象,导致图像背景十分杂乱、违禁品轮廓模糊不清,因此本文首先引入多路径优化机制,通过有效利用深度网络下采样过程中提取的底层空间信息和高层语义信息来优化多边形轮廓的边缘细节,从而提高标注精度;其次,本文设计一种混合损失函数用于优化多边形轮廓的整体形状和位置,并同时消除真值本身存在的主观性误差使模型具有强大的泛化能力.最后,为了验证所提出方法的有效性,本文建立了一个违禁品X线数据集,该数据集包含2623张经过手工标注的X线图像,共10类7257个违禁品带有像素级真值.实验表明,本文提出的方法在标注违禁品时达到了93.1%的准确率,且速度约是手工标注的3.7倍.本文进一步证明了该方法在Cityscapes数据集、MS COCO数据集等其它域外数据集上的有效性.
展开更多
关键词
深度学习
自动标注
x
线数据集
多路径优化
混合损失函数
下载PDF
职称材料
题名
基于Polygon-RefineNet的违禁品X线图像自动标注方法
1
作者
马博文
贾同
刘益辄
滑心语
机构
东北大学信息科学与工程学院
出处
《计算机学报》
EI
CSCD
北大核心
2021年第2期395-408,共14页
基金
国家自然科学基金(U1613214)
国家重点研发计划(2018YFB14041)资助.
文摘
近年来,随着深度学习的快速发展,其在智慧安检领域的应用已经成为了当下的研究热点.众所周知,深度学习方法是以海量训练数据为基础的,然而手工标注真值(ground truth)是一项十分繁琐的工作.为此,本文提出一种基于Polygon-RefineNet的违禁品X线图像自动标注方法,该方法在用户设定的包含感兴趣区域的初始边框(bounding box)内自动预测出目标的多边形轮廓,旨在生成可用真值的情况下最大限度地减少标注时间.由于违禁品X线图像存在大量的重叠现象,导致图像背景十分杂乱、违禁品轮廓模糊不清,因此本文首先引入多路径优化机制,通过有效利用深度网络下采样过程中提取的底层空间信息和高层语义信息来优化多边形轮廓的边缘细节,从而提高标注精度;其次,本文设计一种混合损失函数用于优化多边形轮廓的整体形状和位置,并同时消除真值本身存在的主观性误差使模型具有强大的泛化能力.最后,为了验证所提出方法的有效性,本文建立了一个违禁品X线数据集,该数据集包含2623张经过手工标注的X线图像,共10类7257个违禁品带有像素级真值.实验表明,本文提出的方法在标注违禁品时达到了93.1%的准确率,且速度约是手工标注的3.7倍.本文进一步证明了该方法在Cityscapes数据集、MS COCO数据集等其它域外数据集上的有效性.
关键词
深度学习
自动标注
x
线数据集
多路径优化
混合损失函数
Keywords
deep
learning
automatic
annotation
x
-
ray
dataset
multi-path
refinement
mi
x
ed
loss
function
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Polygon-RefineNet的违禁品X线图像自动标注方法
马博文
贾同
刘益辄
滑心语
《计算机学报》
EI
CSCD
北大核心
2021
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部