Human mesenchymal stem cells (hMSCs) can home to tumor sites and inhibit the growth of tumor cells. Little is known about the underlying molecular mechanisms that link hMSCs to the targeted inhibition of tumor cells...Human mesenchymal stem cells (hMSCs) can home to tumor sites and inhibit the growth of tumor cells. Little is known about the underlying molecular mechanisms that link hMSCs to the targeted inhibition of tumor cells. In this study, we investigated the effects of hMSCs on two human hepatoma cell lines (H7402 and HepG2) using an animal transplantation model, a co-culture system and conditioned media from hMSCs. Animal transplantation studies showed that the latent time for tumor formation was prolonged and that the tumor size was smaller when SCID mice were injected with H7402 cells and an equal number of Z3 hMSCs. When co-cultured with Z3 cells, H7402 cell proliferation decreased, apoptosis increased, and the expression of Bcl-2, c-Myc, proliferating cell nuclear antigen (PCNA) and survivin was downregulated. After treatment with conditioned media derived from Z3 hMSC cultures, H4702 cells showed decreased colony-forming ability and decreased proliferation. Immunoblot analysis showed that β-catenin, Bcl-2, c-Myc, PCNA and survivin expression was downregulated in H7402 and HepG2 cells. Taken together, our findings demonstrate that hMSCs inhibit the malignant phenotypes of the H7402 and HepG2 human liver cancer cell lines, which include proliferation, colony-forming ability and oncogene expression both in vitro and in vivo. Furthermore, our studies provide evidence that the Wnt signaling pathway may have a role in hMSC-mediated targeting and tumor cell inhibition.展开更多
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancerrelated deaths. Gastric adenocarcinoma is a multifactorial disease that is genetically, cytologically and architec...Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancerrelated deaths. Gastric adenocarcinoma is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal carcinomas.The aberrant activation of the Wnt/β-catenin signaling pathway is involved in the development and progression of a significant proportion of gastric cancer cases. This review focuses on the participation of the Wnt/b-catenin pathway in gastric cancer by offering an analysis of the relevant literature published in this field. Indeed, it is discussed the role of key factors in Wnt/β-catenin signaling and their downstream effectors regulating processes involved in tumor initiation, tumor growth, metastasis and resistance to therapy. Available data indicate that constitutive Wnt signalling resulting from Helicobacter pylori infection and inactivation of Wnt inhibitors(mainly by inactivating mutations and promoter hypermethylation) play an important role in gastric cancer. Moreover, a number of recent studies confirmed CTNNB1 and APC as driver genes in gastric cancer. The identification of specific membrane, intracellular, and extracellular components of the Wnt pathway has revealed potential targets for gastric cancer therapy. High-throughput "omics" approaches will help in the search for Wnt pathway antagonist in the near future.展开更多
AIM To study the abnormal expression of β-catenin gene and its relationship with invasiveness of primary hepatocellular carcinoma among Chinese people.METHODS Thirty-four hepatocellular carcinoma (HCC) specimens and ...AIM To study the abnormal expression of β-catenin gene and its relationship with invasiveness of primary hepatocellular carcinoma among Chinese people.METHODS Thirty-four hepatocellular carcinoma (HCC) specimens and adjacent para-cancerous tissues, 4 normal liver tissues were immunohistochemically stained to study subcellular distribution of β-catenin. Semiquantitive analysis of expression of β-catenin gene exon 3 mRNA was examined by RT-PCR and in situ hybridization. The relationship between expressions of both β-catenin protein, mRNA and clinicopathological characteristics of HCC was also analyzed.RESULTS Immunohistochemistry showed that all normal liver tissues and para-cancerous tissues examined displayed membranous type staining for β-catenin protein,occasionally with weak expression in the cytoplasm.While 21 cases (61.8%) of HCC examined showed accumulated type in cytoplasms or nuclei. The accumuled type Labling Index (LI) of cancer tissue and paracancarous tissue was (59.9 ± 26.3) and (18.3 ± 9.7)respectively (P<0.01). Higher accumulated type LI was closely related with invasiveness of HCC. Results of RTPCR showed the β-catenin gene exon 3 mRNA Expression Index (El) of 34 HCCs was higher than that of paracancerous tissue and normal liver tissue. Using in situ hybridization, the signal corresponding to β-catenin gene exon 3 mRNA was particularly strong in cytoplasm of HCC when compared with those of para-cancerous and normal liver tissues. Over expression of β-catenin exon 3 was also found to be correlated with high metastatic potential of HCC.CONCLUSION Abnormal expression of β-catenin gene may contribute importantly to the invasiveness of HCC among Chinese people.展开更多
Alzheimer's disease(AD) is the most common form of dementia in the older population, however, the precise cause of the disease is unknown. The neuropathology is characterized by the presence of aggregates formed by...Alzheimer's disease(AD) is the most common form of dementia in the older population, however, the precise cause of the disease is unknown. The neuropathology is characterized by the presence of aggregates formed by amyloid-β(Aβ) peptide and phosphorylated tau; which is accompanied by progressive impairment of memory. Diverse signaling pathways are linked to AD, and among these the Wnt signaling pathway is becoming increasingly relevant, since it plays essential roles in the adult brain. Initially, Wnt signaling activation was proposed as a neuroprotective mechanism against Aβ toxicity. Later, it was reported that it participates in tau phosphorylation and processes of learning and memory. Interestingly, in the last years we demonstrated that Wnt signaling is fundamental in amyloid precursor protein(APP) processing and that Wnt dysfunction results in Aβ production and aggregation in vitro. Recent in vivo studies reported that loss of canonical Wnt signaling exacerbates amyloid deposition in a transgenic(Tg) mouse model of AD. Finally, we showed that inhibition of Wnt signaling in a Tg mouse previously at the appearance of AD signs, resulted in memory loss, tau phosphorylation and Aβ formation and aggregation; indicating that Wnt dysfunction accelerated the onset of AD. More importantly, Wnt signaling loss promoted cognitive impairment, tau phosphorylation and Aβ1–42 production in the hippocampus of wild-type(WT) mice, contributing to the development of an Alzheimer's-like neurophatology. Therefore, in this review we highlight the importance of Wnt/β-catenin signaling dysfunction in the onset of AD and propose that the loss of canonical Wnt signaling is a triggering factor of AD.展开更多
基金This work was supported by grants from the National Basic Research Program of China (973 Program, No. 2007CB914800 to Xiaodong Zhang), National Natural Science Foundation of China (No. 30570698 to Xiaodong Zhang) and Tianjin Natural Scientific Foundation (No. 033801211 to Xiaodong Zhang).
文摘Human mesenchymal stem cells (hMSCs) can home to tumor sites and inhibit the growth of tumor cells. Little is known about the underlying molecular mechanisms that link hMSCs to the targeted inhibition of tumor cells. In this study, we investigated the effects of hMSCs on two human hepatoma cell lines (H7402 and HepG2) using an animal transplantation model, a co-culture system and conditioned media from hMSCs. Animal transplantation studies showed that the latent time for tumor formation was prolonged and that the tumor size was smaller when SCID mice were injected with H7402 cells and an equal number of Z3 hMSCs. When co-cultured with Z3 cells, H7402 cell proliferation decreased, apoptosis increased, and the expression of Bcl-2, c-Myc, proliferating cell nuclear antigen (PCNA) and survivin was downregulated. After treatment with conditioned media derived from Z3 hMSC cultures, H4702 cells showed decreased colony-forming ability and decreased proliferation. Immunoblot analysis showed that β-catenin, Bcl-2, c-Myc, PCNA and survivin expression was downregulated in H7402 and HepG2 cells. Taken together, our findings demonstrate that hMSCs inhibit the malignant phenotypes of the H7402 and HepG2 human liver cancer cell lines, which include proliferation, colony-forming ability and oncogene expression both in vitro and in vivo. Furthermore, our studies provide evidence that the Wnt signaling pathway may have a role in hMSC-mediated targeting and tumor cell inhibition.
文摘Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancerrelated deaths. Gastric adenocarcinoma is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal carcinomas.The aberrant activation of the Wnt/β-catenin signaling pathway is involved in the development and progression of a significant proportion of gastric cancer cases. This review focuses on the participation of the Wnt/b-catenin pathway in gastric cancer by offering an analysis of the relevant literature published in this field. Indeed, it is discussed the role of key factors in Wnt/β-catenin signaling and their downstream effectors regulating processes involved in tumor initiation, tumor growth, metastasis and resistance to therapy. Available data indicate that constitutive Wnt signalling resulting from Helicobacter pylori infection and inactivation of Wnt inhibitors(mainly by inactivating mutations and promoter hypermethylation) play an important role in gastric cancer. Moreover, a number of recent studies confirmed CTNNB1 and APC as driver genes in gastric cancer. The identification of specific membrane, intracellular, and extracellular components of the Wnt pathway has revealed potential targets for gastric cancer therapy. High-throughput "omics" approaches will help in the search for Wnt pathway antagonist in the near future.
基金江苏省2015年度普通高校研究生科研创新计划项目(No KYZZ15-0274)The People Programme(Marie Curie Actions)of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement n°PIR SES-GA-2013-612589)+1 种基金江苏省优势学科和江苏省自然科学基金项目(No BK20131415)国家自然科学基金资助项目(No 81503374)
基金National Ninth Five-year Plan of Medical Sciences of China(96-9064)105)
文摘AIM To study the abnormal expression of β-catenin gene and its relationship with invasiveness of primary hepatocellular carcinoma among Chinese people.METHODS Thirty-four hepatocellular carcinoma (HCC) specimens and adjacent para-cancerous tissues, 4 normal liver tissues were immunohistochemically stained to study subcellular distribution of β-catenin. Semiquantitive analysis of expression of β-catenin gene exon 3 mRNA was examined by RT-PCR and in situ hybridization. The relationship between expressions of both β-catenin protein, mRNA and clinicopathological characteristics of HCC was also analyzed.RESULTS Immunohistochemistry showed that all normal liver tissues and para-cancerous tissues examined displayed membranous type staining for β-catenin protein,occasionally with weak expression in the cytoplasm.While 21 cases (61.8%) of HCC examined showed accumulated type in cytoplasms or nuclei. The accumuled type Labling Index (LI) of cancer tissue and paracancarous tissue was (59.9 ± 26.3) and (18.3 ± 9.7)respectively (P<0.01). Higher accumulated type LI was closely related with invasiveness of HCC. Results of RTPCR showed the β-catenin gene exon 3 mRNA Expression Index (El) of 34 HCCs was higher than that of paracancerous tissue and normal liver tissue. Using in situ hybridization, the signal corresponding to β-catenin gene exon 3 mRNA was particularly strong in cytoplasm of HCC when compared with those of para-cancerous and normal liver tissues. Over expression of β-catenin exon 3 was also found to be correlated with high metastatic potential of HCC.CONCLUSION Abnormal expression of β-catenin gene may contribute importantly to the invasiveness of HCC among Chinese people.
基金supported by grants PFB (Basal Financing Program) 12/2007 from the Basal Centre for Excellence in Science and Technology and FONDECYT,No.1120156(to NCI)a pre-doctoral fellowship from the National Commission of Science and Technology of Chile(CONICYT)(to CTR)
文摘Alzheimer's disease(AD) is the most common form of dementia in the older population, however, the precise cause of the disease is unknown. The neuropathology is characterized by the presence of aggregates formed by amyloid-β(Aβ) peptide and phosphorylated tau; which is accompanied by progressive impairment of memory. Diverse signaling pathways are linked to AD, and among these the Wnt signaling pathway is becoming increasingly relevant, since it plays essential roles in the adult brain. Initially, Wnt signaling activation was proposed as a neuroprotective mechanism against Aβ toxicity. Later, it was reported that it participates in tau phosphorylation and processes of learning and memory. Interestingly, in the last years we demonstrated that Wnt signaling is fundamental in amyloid precursor protein(APP) processing and that Wnt dysfunction results in Aβ production and aggregation in vitro. Recent in vivo studies reported that loss of canonical Wnt signaling exacerbates amyloid deposition in a transgenic(Tg) mouse model of AD. Finally, we showed that inhibition of Wnt signaling in a Tg mouse previously at the appearance of AD signs, resulted in memory loss, tau phosphorylation and Aβ formation and aggregation; indicating that Wnt dysfunction accelerated the onset of AD. More importantly, Wnt signaling loss promoted cognitive impairment, tau phosphorylation and Aβ1–42 production in the hippocampus of wild-type(WT) mice, contributing to the development of an Alzheimer's-like neurophatology. Therefore, in this review we highlight the importance of Wnt/β-catenin signaling dysfunction in the onset of AD and propose that the loss of canonical Wnt signaling is a triggering factor of AD.