Spontaneous combustion of coal is a well-known phenomena around the globe. Apart from the coal itself,burning coal-shales is becoming a problem in the South African coal mines. Serious incidents of spontaneous combust...Spontaneous combustion of coal is a well-known phenomena around the globe. Apart from the coal itself,burning coal-shales is becoming a problem in the South African coal mines. Serious incidents of spontaneous combustion have been reported as a result of self-heating of reactive coal-shales. The intrinsic properties and spontaneous combustion tests of 28 selected coal and coal-shale samples were conducted and a relationship between the two has been established. Intrinsic properties were obtained by using the proximate and ultimate analysis, and spontaneous combustion liability tests results were obtained by using the Wits-Ehac and Wits-CT indices. The experimental results show that intrinsic properties of these materials complement to the spontaneous combustion liability tests results. Comparative analyses of intrinsic properties and spontaneous combustion characteristics indicate similarities between the mechanism of coal oxidation and that of the oxidative processes undergone by coal-shales. For the tested samples, coal samples have a higher intrinsic spontaneous combustion reactivity rating than the coal-shales.Furthermore, an increase in carbon, moisture, hydrogen, volatile matter, nitrogen and a decrease in ash content indicate an increased proneness to self-heating. The concentration of pyrite found in the coal-shales accelerates self-heating. The event of spontaneous combustion can occur if coal-shales absorb sufficient oxygen when subjected to atmospheric conditions.展开更多
Coal and coal-shale undergo low-temperature oxidation when exposed to air,potentially leading to spontaneous combustion.Coal-shale found in association with coal seams vary considerably in their intrinsic properties a...Coal and coal-shale undergo low-temperature oxidation when exposed to air,potentially leading to spontaneous combustion.Coal-shale found in association with coal seams vary considerably in their intrinsic properties and spontaneous combustion liability index.Fourteen coal-shale samples collected from four different coal mines in Witbank Coalfield,South Africa,were experimentally investigated.The influence of coal-shale intrinsic properties and spontaneous combustion liability indices(determined by the WitsEhac Index and the Wits-CT Index)were established.The liability indices indicate relationships with the intrinsic factors and thus,identifying the major intrinsic factors affecting liability toward spontaneous combustion in these coal-shale samples.The XRF analysis indicated that the coal-shale samples are rich in Si O2,Al2O3 and Fe2O3,while the XRD showed that same coal-shale samples are generally dominated with kaolinite and quartz.The coal-shale occurred in association with medium Rank C bituminous coal and contained varying proportion of macerals.The Wits-Ehac Index was unable to reliably determine liability indices of some coal-shale samples,and hence the Wits-CT Index was developed.The results obtained from the characterisation tests may be used as a tool to predict the spontaneous combustion liability in carbonaceous material and may serve as a reference when comparing coal-shale from different coal mines.展开更多
This paper presents predictive models to determine spontaneous combustion liability of carbonaceous materials (coals and coal-shales) using statistical analysis. The intrinsic properties and spontaneous combustion l...This paper presents predictive models to determine spontaneous combustion liability of carbonaceous materials (coals and coal-shales) using statistical analysis. The intrinsic properties and spontaneous combustion liability index were determined by testing 14 coals and 14 coal-shales from Witbank coalfields, South Africa. The relationship between these intrinsic properties (obtained from proximate, ultimate and petrographic analysis) and spontaneous combustion liability indices (the Wits-Ehac Index and Wits-CT Index) were established. The influence of the intrinsic properties of coal-shales in relation to coal properties affecting spontaneous combustion has been established using a statistical method. The linear regression analysis indicates better linear relationships between some of the selected intrinsic properties and spontaneous combustion liability index and thus, identifies the major intrinsic factors affecting their liability toward spontaneous combustion. It was found that a definite positive or negative correlation coefficient exists between the intrinsic factors and spontaneous combustion liability. A set of models to predict the spontaneous combustion liability was derived. The best significant correlation along with the most appropriate model as indicated by R-squared values, the coefficient of corre- lations and standard error was used to predict the incident of spontaneous combustion.展开更多
Coal and coal-shale both tend to undergo spontaneous combustion under favourable atmospheric conditions. The Wits-Ehac index has been developed in South Africa since the late 1980's to test the spontaneous combust...Coal and coal-shale both tend to undergo spontaneous combustion under favourable atmospheric conditions. The Wits-Ehac index has been developed in South Africa since the late 1980's to test the spontaneous combustion liability of coal. However, in some cases, the Wits-Ehac index fails to produce tangible results when testing coal-shales. To overcome this problem, a new apparatus has been developed to test carbonaceous materials such as coal and coal-shale under chemical reactions with oxygen and an index has been obtained. This index is called the Wits-CT index. The equipment emulates the influence of oxygen adsorption on carbonaceous material for a period of 24 h without a heating system.The Wits-CT index uses the total carbon content of the sample and the temperature variations obtained from the samples during reaction with oxygen to predict the spontaneous combustion liability. Eighteen samples have been analyzed using both indices and the results are in-line. It was found that coals and coal-shales with higher values of the Wits-CT index are more liable to spontaneous combustion.Further research on different coal-shales is underway in order to establish an extensive database for coal and coal-shales, together with known incidences of self-heating.展开更多
The spontaneous combustion liability of coal can be determined by using different experimental techniques.These techniques are well-known in their application,but no certain test method has become a standard to prove ...The spontaneous combustion liability of coal can be determined by using different experimental techniques.These techniques are well-known in their application,but no certain test method has become a standard to prove the reliability of all of them.A general characterisation which included proximate and ultimate analyses,petrographic properties and spontaneous combustion tests(thermogravimetric analysis(TGA)and the Wits-Ehac tests)were conducted on fourteen coal and four coal-shale samples.The spontaneous combustion liability of these samples collected between coal seams(above and below)were predicted using the TGA and the Wits-Ehac tests.Six different heating rates(3,6,9,15,20 and 25C/min)were selected based on the deviation coefficient to obtain different derivative slopes and a liability index termed the TGspc index.This study found that coal and coal-shale undergo spontaneous combustion between coal seams when exposed to oxygen in the air.Their intrinsic properties and proneness towards spontaneous combustion differ considerably from one seam to the other.The Wits-Ehac test results agreed with the TGspc results to a certain extent and revealed the incidents of spontaneous combustion in the coal mines.展开更多
文摘Spontaneous combustion of coal is a well-known phenomena around the globe. Apart from the coal itself,burning coal-shales is becoming a problem in the South African coal mines. Serious incidents of spontaneous combustion have been reported as a result of self-heating of reactive coal-shales. The intrinsic properties and spontaneous combustion tests of 28 selected coal and coal-shale samples were conducted and a relationship between the two has been established. Intrinsic properties were obtained by using the proximate and ultimate analysis, and spontaneous combustion liability tests results were obtained by using the Wits-Ehac and Wits-CT indices. The experimental results show that intrinsic properties of these materials complement to the spontaneous combustion liability tests results. Comparative analyses of intrinsic properties and spontaneous combustion characteristics indicate similarities between the mechanism of coal oxidation and that of the oxidative processes undergone by coal-shales. For the tested samples, coal samples have a higher intrinsic spontaneous combustion reactivity rating than the coal-shales.Furthermore, an increase in carbon, moisture, hydrogen, volatile matter, nitrogen and a decrease in ash content indicate an increased proneness to self-heating. The concentration of pyrite found in the coal-shales accelerates self-heating. The event of spontaneous combustion can occur if coal-shales absorb sufficient oxygen when subjected to atmospheric conditions.
基金funded by Coaltech and is part of a PhD research/Postdoctoral study in the School of Mining Engineering at the University of the Witwatersrand
文摘Coal and coal-shale undergo low-temperature oxidation when exposed to air,potentially leading to spontaneous combustion.Coal-shale found in association with coal seams vary considerably in their intrinsic properties and spontaneous combustion liability index.Fourteen coal-shale samples collected from four different coal mines in Witbank Coalfield,South Africa,were experimentally investigated.The influence of coal-shale intrinsic properties and spontaneous combustion liability indices(determined by the WitsEhac Index and the Wits-CT Index)were established.The liability indices indicate relationships with the intrinsic factors and thus,identifying the major intrinsic factors affecting liability toward spontaneous combustion in these coal-shale samples.The XRF analysis indicated that the coal-shale samples are rich in Si O2,Al2O3 and Fe2O3,while the XRD showed that same coal-shale samples are generally dominated with kaolinite and quartz.The coal-shale occurred in association with medium Rank C bituminous coal and contained varying proportion of macerals.The Wits-Ehac Index was unable to reliably determine liability indices of some coal-shale samples,and hence the Wits-CT Index was developed.The results obtained from the characterisation tests may be used as a tool to predict the spontaneous combustion liability in carbonaceous material and may serve as a reference when comparing coal-shale from different coal mines.
文摘This paper presents predictive models to determine spontaneous combustion liability of carbonaceous materials (coals and coal-shales) using statistical analysis. The intrinsic properties and spontaneous combustion liability index were determined by testing 14 coals and 14 coal-shales from Witbank coalfields, South Africa. The relationship between these intrinsic properties (obtained from proximate, ultimate and petrographic analysis) and spontaneous combustion liability indices (the Wits-Ehac Index and Wits-CT Index) were established. The influence of the intrinsic properties of coal-shales in relation to coal properties affecting spontaneous combustion has been established using a statistical method. The linear regression analysis indicates better linear relationships between some of the selected intrinsic properties and spontaneous combustion liability index and thus, identifies the major intrinsic factors affecting their liability toward spontaneous combustion. It was found that a definite positive or negative correlation coefficient exists between the intrinsic factors and spontaneous combustion liability. A set of models to predict the spontaneous combustion liability was derived. The best significant correlation along with the most appropriate model as indicated by R-squared values, the coefficient of corre- lations and standard error was used to predict the incident of spontaneous combustion.
基金conducted in the context of coal-shale spontaneous combustion in the eMalahleni coalfields, South Africa was financially sponsored by Coaltech
文摘Coal and coal-shale both tend to undergo spontaneous combustion under favourable atmospheric conditions. The Wits-Ehac index has been developed in South Africa since the late 1980's to test the spontaneous combustion liability of coal. However, in some cases, the Wits-Ehac index fails to produce tangible results when testing coal-shales. To overcome this problem, a new apparatus has been developed to test carbonaceous materials such as coal and coal-shale under chemical reactions with oxygen and an index has been obtained. This index is called the Wits-CT index. The equipment emulates the influence of oxygen adsorption on carbonaceous material for a period of 24 h without a heating system.The Wits-CT index uses the total carbon content of the sample and the temperature variations obtained from the samples during reaction with oxygen to predict the spontaneous combustion liability. Eighteen samples have been analyzed using both indices and the results are in-line. It was found that coals and coal-shales with higher values of the Wits-CT index are more liable to spontaneous combustion.Further research on different coal-shales is underway in order to establish an extensive database for coal and coal-shales, together with known incidences of self-heating.
文摘The spontaneous combustion liability of coal can be determined by using different experimental techniques.These techniques are well-known in their application,but no certain test method has become a standard to prove the reliability of all of them.A general characterisation which included proximate and ultimate analyses,petrographic properties and spontaneous combustion tests(thermogravimetric analysis(TGA)and the Wits-Ehac tests)were conducted on fourteen coal and four coal-shale samples.The spontaneous combustion liability of these samples collected between coal seams(above and below)were predicted using the TGA and the Wits-Ehac tests.Six different heating rates(3,6,9,15,20 and 25C/min)were selected based on the deviation coefficient to obtain different derivative slopes and a liability index termed the TGspc index.This study found that coal and coal-shale undergo spontaneous combustion between coal seams when exposed to oxygen in the air.Their intrinsic properties and proneness towards spontaneous combustion differ considerably from one seam to the other.The Wits-Ehac test results agreed with the TGspc results to a certain extent and revealed the incidents of spontaneous combustion in the coal mines.