Reradiation interference(RRI) from ultra high voltage(UHV) power lines has become a hotspot for researches in electromagnetic(EM) interference between UHV power grids and adjacent radio stations.The mechanism of RRI,n...Reradiation interference(RRI) from ultra high voltage(UHV) power lines has become a hotspot for researches in electromagnetic(EM) interference between UHV power grids and adjacent radio stations.The mechanism of RRI,numerical simulations,methods of protecting distance calculation,and resonance characteristics of RRI are reviewed in this paper using results of works reported by IEEE and Chinese publications.We conclude in this review that RRI at short and medium wavelengths can be simulated using method of moment(MoM) and two commonly used models,the wire model and the surface model,which have different applicable conditions.We indicate that the accurate simulation of RRI at higher frequencies using uniform geometrical theory of diffraction is still beyond our capability because it requires studies of the relative simulation methods.We also suggest that further researches of the mechanism of RRI and the prediction of resonance frequencies above 1.7 MHz are necessary for dealing with the interference between the existing power lines and radio stations because resonance frequencies proposed by IEEE are less than 1.7 MHz.展开更多
We analyze nonequilibrium electronic transport properties of a typical interacting three-site quantum wire model within Hartree-Fock approximation making use of Keldysh formalism. Some rigorous formulas are provided f...We analyze nonequilibrium electronic transport properties of a typical interacting three-site quantum wire model within Hartree-Fock approximation making use of Keldysh formalism. Some rigorous formulas are provided for direct calculations when Coulomb repulsion is present. According to numerical calculations using above formulas, we investigate the conductance, transport currents, and on site electronic charges of the wire on some special occasions in the interacting case, and also compare them with the results in the noninteracting case.展开更多
基金Project supported by National Natural Science Foundation of China (51307098), Hubei Provincial Natural Science Foundation of China (2012FFB03701).
文摘Reradiation interference(RRI) from ultra high voltage(UHV) power lines has become a hotspot for researches in electromagnetic(EM) interference between UHV power grids and adjacent radio stations.The mechanism of RRI,numerical simulations,methods of protecting distance calculation,and resonance characteristics of RRI are reviewed in this paper using results of works reported by IEEE and Chinese publications.We conclude in this review that RRI at short and medium wavelengths can be simulated using method of moment(MoM) and two commonly used models,the wire model and the surface model,which have different applicable conditions.We indicate that the accurate simulation of RRI at higher frequencies using uniform geometrical theory of diffraction is still beyond our capability because it requires studies of the relative simulation methods.We also suggest that further researches of the mechanism of RRI and the prediction of resonance frequencies above 1.7 MHz are necessary for dealing with the interference between the existing power lines and radio stations because resonance frequencies proposed by IEEE are less than 1.7 MHz.
文摘We analyze nonequilibrium electronic transport properties of a typical interacting three-site quantum wire model within Hartree-Fock approximation making use of Keldysh formalism. Some rigorous formulas are provided for direct calculations when Coulomb repulsion is present. According to numerical calculations using above formulas, we investigate the conductance, transport currents, and on site electronic charges of the wire on some special occasions in the interacting case, and also compare them with the results in the noninteracting case.