The Stereo Particle Image Velocimetry(SPIV)technology is applied to measure the wingtip vortices generated by the up-down symmetrical split winglet.Then,the temporal biglobal Linear Stability Analysis(bi-global LSA)is...The Stereo Particle Image Velocimetry(SPIV)technology is applied to measure the wingtip vortices generated by the up-down symmetrical split winglet.Then,the temporal biglobal Linear Stability Analysis(bi-global LSA)is performed on this nearly equal-strength corotating vortex pair,which is composed of an upper vortex(vortex-u)and a down vortex(vortex-d).The results show that the instability eigenvalue spectrum illustrated by(ωr,ω_(i))contains two types of branches:discrete branch and continuous branch.The discrete branch contains the primary branches of vortex-u and vortex-d,the secondary branch of vortex-d and coupled branch,of which all of the eigenvalues are located in the unstable half-plane ofω_(i)>0,indicating that the wingtip vortex pair is temporally unstable.By contrast,the eigenvalues of the continuous branch are concentrated on the half-plane ofω_(i)<0 and the perturbation modes correspond to the freestream perturbation.In the primary branches of vortex-u and vortex-d,Mode P_(u) and Mode Pd are the primary perturbation modes,which exhibit the structures enclosed with azimuthal wavenumber m and radial wavenumber n,respectively.Besides,the results of stability curves for vortex-u and vortex-d demonstrate that the instability growth rates of vortex-u are larger than those of vortex-d,and the perturbation energy of Mode P_(u) is also larger than that of Mode Pd.Moreover,the perturbation energy of Mode P_(u) is up to 0.02650 and accounts for 33.56%percent in the corresponding branch,thereby indicating that the instability development of wingtip vortex is dominated by Mode P_(u).By further investigating the topological structures of Mode P_(u) and Mode Pd with streamwise wavenumbers,the most unstable perturbation mode with a large azimuthal wavenumber of m=5-6 is identified,which imposes on the entire core region of vortex-u.This large azimuthal wavenumber perturbation mode can suggest the potential physical-based flow control strategy by manipulating it.展开更多
The performance improvement of swarm drones through aerodynamic shape optimization may be challenging due to folded size constraints imposed by the specific launch approach.However,fixed-wing aircraft swarms can benef...The performance improvement of swarm drones through aerodynamic shape optimization may be challenging due to folded size constraints imposed by the specific launch approach.However,fixed-wing aircraft swarms can benefit from formation flight in terms of energy consumption.This study introduces the concept of the"aerodynamic formation unit",which consists of two or three aircraft that form an inseparable unit of the formation.Considering the Unmanned Aerial Vehicle(UAV)distribution and wingtip vortex interference in the formation,two typical aerodynamic formation units are optimized by the variable-fidelity aerodynamic optimization method based on space mapping.The aerodynamic characteristics of the formation UAVs that affect flight performance,such as lift-to-drag ratio(L/D ratio)and static stability are analyzed by Computational Fluid Dynamics(CFD)simulations.The L/D ratio(cruising condition)of the following aircraft can be increased by 22.8%and 57.5%in the optimal units that involve two and three aircraft respectively.Moreover,this study conducts several CFD simulations for multi-aircraft formations formed by the units,which show that the average L/D ratio of the formation can be improved by more than 19%.These results verify the feasibility and effectiveness of the"aerodynamic formation unit"concept and the optimization framework for formation parameters.展开更多
The present paper describes control of wingtip vortices generated by vertical type wind turbine. The wind turbine consists of three circular cylinders. Each cylinder rotates on its own vertical axis and moves in orbit...The present paper describes control of wingtip vortices generated by vertical type wind turbine. The wind turbine consists of three circular cylinders. Each cylinder rotates on its own vertical axis and moves in orbit. It is known that wingtip vortices give rise to decrease of power generation performance as well as aerodynamic noise. Therefore, the goal of the study is to control wingtip vortices and to improve power generation performance. Numerical study was conducted for 14 models to find out control factors to suppress wingtip vortices. Numerical simulation visualized wingtips by streamlines as well as pressure distribution on the circular cylinder for evaluating Magnus effect. As a result, the following findings were obtained: 1) Installation of fully covered protection plates at both ends of the circular cylinder blades is greatly effective to suppress the wingtip vortices. 2) Curved wings attached to each cylinder are more effective to enhance power generation efficiency than flat ones, due to great increase in Magnus effect caused by large pressure difference on both sides of the curved wing. The power efficiency of the optimized model was improved up to 2.8%, which means 11 times that of the original model.展开更多
The slotted wingtip structure of birds is considered to be the product of improving flight efficiency in the process of evolution. It can change the vortex structure of wingtip and improve aerodynamic efficiency. This...The slotted wingtip structure of birds is considered to be the product of improving flight efficiency in the process of evolution. It can change the vortex structure of wingtip and improve aerodynamic efficiency. This paper reports a numerical investigation of slotted wing configuration undergoing bio-inspired flapping kinematics(consisting of plunging and in-line movement)extracted from a free-flying bald eagle wing. The aim is to eluci-date the collective mechanism of the flow generated by slotted tips and the lift contribution of each tip. Specifi-cally, the objective of the study is to determine how changes in the wing spacing affect the resulting aerodynamic interaction between the slotted tips and how that affects the force generation and efficiency. Changes in the phase angle between the flapping motions of slotted tips, as well as the spacings among them,can affect the resulting vortex inter-actions. The rear tips often operates in the wake of the frontal tips and, meanwhile, the vortex generated by the movement of the rear tips promote the frontal tips.The interaction of vortices in time and space leads to wing-wing interference and the flow around slotted tips becomes complicated and unstable. The innovative study of wingtip slot in unsteady state leads us to find that the aerodynamic interaction among slotted tips makes the overall lift characteristic better than that of the unslotted wings. The slotted wing configuration can efficiently convert more energy into lift. As the flapping frequency increases, the collective feature of slotted wing with constantly changing gaps can be more advantageous to enhance lift-generation performance.展开更多
Wingtip slots,where the outer primary feathers of birds split and spread vertically,are regarded as an evolved favorable feature that could effectively improve their aerodynamic performance.They have inspired many to ...Wingtip slots,where the outer primary feathers of birds split and spread vertically,are regarded as an evolved favorable feature that could effectively improve their aerodynamic performance.They have inspired many to perform experiments and simulations as well as to relate their results to aircraft design.This paper aims to provide guidance for the research on the aerodynamic mechanism of wingtip slots.Following a review of previous wingtip slot research,four imperfections are put forward:vacancies in research content,inconsistencies in research conclusions,limitations of early research methods,and shortage of the aerodynamic mechanism analysis.On this basis,further explorations and expansion of the influence factors for steady state are needed;more attention should be poured into the application of flow field integration method to decompose drag,and evaluation of variation in induced drag seems a more rational choice.Geometric and kinematic parameters of wingtip slot structure in the unsteady state,as well as the flexibility of wingtips,should be taken into account.As for the aerodynamic mechanism of wingtip slots,the emphasis can be placed on the study of the formation,development,and evolution of wingtip vortices on slotted wings.Besides,some research strategies and feasibility analyses are proposed for each part of the research.展开更多
The wing tip vortex has a great similarity with the swirling jets.Since these are generated of a simpler and more economic form in a laboratory,it is relevant to determine which the best method is for the generation o...The wing tip vortex has a great similarity with the swirling jets.Since these are generated of a simpler and more economic form in a laboratory,it is relevant to determine which the best method is for the generation of the swirling jet.In this paper,the velocity distribution obtained experimentally with the method of generation here proposed,which consists of the employment of an axial fan without stators,is compared with the velocity distribution of swirling jets generated with three different methods.It is observed that the velocity distribution obtained with the proposed method is similar with one of the methods found in the references,which uses fixed blades guides at the entry of the pipe.The proposed method is suitable for the generation of the swirling jet and it is considered that it is simpler and more economic to use blades fixed guides.展开更多
基金co-supported by the National Basic Research Program of China(No.2014CB744802)Major Research of National Natural Science Foundation of China(No.91952302)China Postdoctoral Science Foundation(No.2018 M642007)。
文摘The Stereo Particle Image Velocimetry(SPIV)technology is applied to measure the wingtip vortices generated by the up-down symmetrical split winglet.Then,the temporal biglobal Linear Stability Analysis(bi-global LSA)is performed on this nearly equal-strength corotating vortex pair,which is composed of an upper vortex(vortex-u)and a down vortex(vortex-d).The results show that the instability eigenvalue spectrum illustrated by(ωr,ω_(i))contains two types of branches:discrete branch and continuous branch.The discrete branch contains the primary branches of vortex-u and vortex-d,the secondary branch of vortex-d and coupled branch,of which all of the eigenvalues are located in the unstable half-plane ofω_(i)>0,indicating that the wingtip vortex pair is temporally unstable.By contrast,the eigenvalues of the continuous branch are concentrated on the half-plane ofω_(i)<0 and the perturbation modes correspond to the freestream perturbation.In the primary branches of vortex-u and vortex-d,Mode P_(u) and Mode Pd are the primary perturbation modes,which exhibit the structures enclosed with azimuthal wavenumber m and radial wavenumber n,respectively.Besides,the results of stability curves for vortex-u and vortex-d demonstrate that the instability growth rates of vortex-u are larger than those of vortex-d,and the perturbation energy of Mode P_(u) is also larger than that of Mode Pd.Moreover,the perturbation energy of Mode P_(u) is up to 0.02650 and accounts for 33.56%percent in the corresponding branch,thereby indicating that the instability development of wingtip vortex is dominated by Mode P_(u).By further investigating the topological structures of Mode P_(u) and Mode Pd with streamwise wavenumbers,the most unstable perturbation mode with a large azimuthal wavenumber of m=5-6 is identified,which imposes on the entire core region of vortex-u.This large azimuthal wavenumber perturbation mode can suggest the potential physical-based flow control strategy by manipulating it.
文摘The performance improvement of swarm drones through aerodynamic shape optimization may be challenging due to folded size constraints imposed by the specific launch approach.However,fixed-wing aircraft swarms can benefit from formation flight in terms of energy consumption.This study introduces the concept of the"aerodynamic formation unit",which consists of two or three aircraft that form an inseparable unit of the formation.Considering the Unmanned Aerial Vehicle(UAV)distribution and wingtip vortex interference in the formation,two typical aerodynamic formation units are optimized by the variable-fidelity aerodynamic optimization method based on space mapping.The aerodynamic characteristics of the formation UAVs that affect flight performance,such as lift-to-drag ratio(L/D ratio)and static stability are analyzed by Computational Fluid Dynamics(CFD)simulations.The L/D ratio(cruising condition)of the following aircraft can be increased by 22.8%and 57.5%in the optimal units that involve two and three aircraft respectively.Moreover,this study conducts several CFD simulations for multi-aircraft formations formed by the units,which show that the average L/D ratio of the formation can be improved by more than 19%.These results verify the feasibility and effectiveness of the"aerodynamic formation unit"concept and the optimization framework for formation parameters.
文摘The present paper describes control of wingtip vortices generated by vertical type wind turbine. The wind turbine consists of three circular cylinders. Each cylinder rotates on its own vertical axis and moves in orbit. It is known that wingtip vortices give rise to decrease of power generation performance as well as aerodynamic noise. Therefore, the goal of the study is to control wingtip vortices and to improve power generation performance. Numerical study was conducted for 14 models to find out control factors to suppress wingtip vortices. Numerical simulation visualized wingtips by streamlines as well as pressure distribution on the circular cylinder for evaluating Magnus effect. As a result, the following findings were obtained: 1) Installation of fully covered protection plates at both ends of the circular cylinder blades is greatly effective to suppress the wingtip vortices. 2) Curved wings attached to each cylinder are more effective to enhance power generation efficiency than flat ones, due to great increase in Magnus effect caused by large pressure difference on both sides of the curved wing. The power efficiency of the optimized model was improved up to 2.8%, which means 11 times that of the original model.
基金the support from the National Natural Science Foundation of China(Nos.11872314 and U1613227)the Key R&D Program in Shaanxi Province of China(No.2020GY-154)。
文摘The slotted wingtip structure of birds is considered to be the product of improving flight efficiency in the process of evolution. It can change the vortex structure of wingtip and improve aerodynamic efficiency. This paper reports a numerical investigation of slotted wing configuration undergoing bio-inspired flapping kinematics(consisting of plunging and in-line movement)extracted from a free-flying bald eagle wing. The aim is to eluci-date the collective mechanism of the flow generated by slotted tips and the lift contribution of each tip. Specifi-cally, the objective of the study is to determine how changes in the wing spacing affect the resulting aerodynamic interaction between the slotted tips and how that affects the force generation and efficiency. Changes in the phase angle between the flapping motions of slotted tips, as well as the spacings among them,can affect the resulting vortex inter-actions. The rear tips often operates in the wake of the frontal tips and, meanwhile, the vortex generated by the movement of the rear tips promote the frontal tips.The interaction of vortices in time and space leads to wing-wing interference and the flow around slotted tips becomes complicated and unstable. The innovative study of wingtip slot in unsteady state leads us to find that the aerodynamic interaction among slotted tips makes the overall lift characteristic better than that of the unslotted wings. The slotted wing configuration can efficiently convert more energy into lift. As the flapping frequency increases, the collective feature of slotted wing with constantly changing gaps can be more advantageous to enhance lift-generation performance.
基金support from National Natural Science Foundation of China(Grant 11872314 and U1613227)Youth Program of Natural Science Basic Research Plan in Shaanxi Province of China(Grant 2019JQ-394)Key R&D Program in Shaanxi Province of China(Grant 2020GY-154).
文摘Wingtip slots,where the outer primary feathers of birds split and spread vertically,are regarded as an evolved favorable feature that could effectively improve their aerodynamic performance.They have inspired many to perform experiments and simulations as well as to relate their results to aircraft design.This paper aims to provide guidance for the research on the aerodynamic mechanism of wingtip slots.Following a review of previous wingtip slot research,four imperfections are put forward:vacancies in research content,inconsistencies in research conclusions,limitations of early research methods,and shortage of the aerodynamic mechanism analysis.On this basis,further explorations and expansion of the influence factors for steady state are needed;more attention should be poured into the application of flow field integration method to decompose drag,and evaluation of variation in induced drag seems a more rational choice.Geometric and kinematic parameters of wingtip slot structure in the unsteady state,as well as the flexibility of wingtips,should be taken into account.As for the aerodynamic mechanism of wingtip slots,the emphasis can be placed on the study of the formation,development,and evolution of wingtip vortices on slotted wings.Besides,some research strategies and feasibility analyses are proposed for each part of the research.
文摘The wing tip vortex has a great similarity with the swirling jets.Since these are generated of a simpler and more economic form in a laboratory,it is relevant to determine which the best method is for the generation of the swirling jet.In this paper,the velocity distribution obtained experimentally with the method of generation here proposed,which consists of the employment of an axial fan without stators,is compared with the velocity distribution of swirling jets generated with three different methods.It is observed that the velocity distribution obtained with the proposed method is similar with one of the methods found in the references,which uses fixed blades guides at the entry of the pipe.The proposed method is suitable for the generation of the swirling jet and it is considered that it is simpler and more economic to use blades fixed guides.