Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting t...Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual real- ity interface devices such as the Nintendo~ Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addi- tion, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.展开更多
Objective: To evaluate the efficacy of Nintendo Wii training in quality of life in Parkinson’s disease (PD) patients when compared to traditional physical therapy (PT). Methods: A randomized, single-blinded trial wit...Objective: To evaluate the efficacy of Nintendo Wii training in quality of life in Parkinson’s disease (PD) patients when compared to traditional physical therapy (PT). Methods: A randomized, single-blinded trial with 2 parallel arms was performed in a referral center for movement disorders in North-eastern, Brazil. Forty-four PD outpatients that fulfilled the eligibility criteria with mild to moderate motor impairment were randomized. Both groups executed a warm up session for 10 minutes that consisted of trunk flexion, extension and rotation, associated with upper and lower limbs stretching. The PT group followed a program that consisted of trunk and limb mobilisation, balance, muscle strengthening, rhythmic movement, postural alignment, double-task execution, bimanual tasks, and gait training. The Nintendo Wii group executed a sequence of tasks according to a previously established protocol, with similar training exercises. Duration of exercises was 40 minutes per session, 3 days per week for 4 weeks. The primary endpoint was the total score obtained in the Parkinson’s disease quality of life questionnaire (PDQ-39) translated from English to Brazilian Portuguese by Oxford outcomes. Secondary endpoints were the scores achieved by each group in the following domains of PDQ-39 scale: mobility, activities of daily living (ADL), emotional well-being, stigma, social support, cognition, communication and bodily discomfort. Assessments were performed before and after intervention in both groups with subjects in the “on” period. Results: Subjects in the Nintendo Wii group showed greater improvement in the PDQ-39 total score when compared to PT group (p = 0.01). Also, significant differences were observed in ADL, stigma, social support and communication when comparing subjects before and after intervention in the Nintendo Wii group (p < 0.05). Conclusions: The results achieved in this trial suggest that rehabilitation using Nintendo Wii may have beneficial effects in quality of life of PD subjects, when compared展开更多
基金financially supported by the National Fund for Health Research and Development(FONIS) of the National Commission for Scientific and Technological Research(CONICYT),No.Sa11i2018a grant from Research Department of the University of Talca
文摘Two key characteristics of all virtual reality applications are interaction and immersion. Systemic interaction is achieved through a variety of multisensory channels (hearing, sight, touch, and smell), permitting the user to interact with the virtual world in real time. Immersion is the degree to which a person can feel wrapped in the virtual world through a defined interface. Virtual real- ity interface devices such as the Nintendo~ Wii and its peripheral nunchuks-balance board, head mounted displays and joystick allow interaction and immersion in unreal environments created from computer software. Virtual environments are highly interactive, generating great activation of visual, vestibular and proprioceptive systems during the execution of a video game. In addi- tion, they are entertaining and safe for the user. Recently, incorporating therapeutic purposes in virtual reality interface devices has allowed them to be used for the rehabilitation of neurological patients, e.g., balance training in older adults and dynamic stability in healthy participants. The improvements observed in neurological diseases (chronic stroke and cerebral palsy) have been shown by changes in the reorganization of neural networks in patients' brain, along with better hand function and other skills, contributing to their quality of life. The data generated by such studies could substantially contribute to physical rehabilitation strategies.
文摘Objective: To evaluate the efficacy of Nintendo Wii training in quality of life in Parkinson’s disease (PD) patients when compared to traditional physical therapy (PT). Methods: A randomized, single-blinded trial with 2 parallel arms was performed in a referral center for movement disorders in North-eastern, Brazil. Forty-four PD outpatients that fulfilled the eligibility criteria with mild to moderate motor impairment were randomized. Both groups executed a warm up session for 10 minutes that consisted of trunk flexion, extension and rotation, associated with upper and lower limbs stretching. The PT group followed a program that consisted of trunk and limb mobilisation, balance, muscle strengthening, rhythmic movement, postural alignment, double-task execution, bimanual tasks, and gait training. The Nintendo Wii group executed a sequence of tasks according to a previously established protocol, with similar training exercises. Duration of exercises was 40 minutes per session, 3 days per week for 4 weeks. The primary endpoint was the total score obtained in the Parkinson’s disease quality of life questionnaire (PDQ-39) translated from English to Brazilian Portuguese by Oxford outcomes. Secondary endpoints were the scores achieved by each group in the following domains of PDQ-39 scale: mobility, activities of daily living (ADL), emotional well-being, stigma, social support, cognition, communication and bodily discomfort. Assessments were performed before and after intervention in both groups with subjects in the “on” period. Results: Subjects in the Nintendo Wii group showed greater improvement in the PDQ-39 total score when compared to PT group (p = 0.01). Also, significant differences were observed in ADL, stigma, social support and communication when comparing subjects before and after intervention in the Nintendo Wii group (p < 0.05). Conclusions: The results achieved in this trial suggest that rehabilitation using Nintendo Wii may have beneficial effects in quality of life of PD subjects, when compared