For the anti-interference/denoise purpose,it usually requires minimizing the sidelobe level(SLL)of a wide-beam pattern with a desired low nulling level(NL)in the nulling region.To realize such an objective,the shaped-...For the anti-interference/denoise purpose,it usually requires minimizing the sidelobe level(SLL)of a wide-beam pattern with a desired low nulling level(NL)in the nulling region.To realize such an objective,the shaped-beam pattern synthesis(SBPS)is the most commonly used approach.However,since the SBPS problem focuses on synthesizing a predetermined beam shape,the minimum SLL via this approach cannot ensure to obtain the maximum power gain.Conversely,it cannot obtain the lowest SLL with a certain power gain requirement.Based on such consideration,this paper tries to further minimize SLL of a wide-beam pattern with a desired low NL nulling region,by solving the power gain pattern synthesis(PGPS)problem.The PGPS problem selects the array excitation by directly optimizing the power gain.Hence,it has the potential to reduce SLL,when achieving the equal mainlobe power gain constraint via SBPS.An iterative algorithm which converts the primal optimization problem into convex sub-problems is proposed,resulting in an effective problem-solving scheme.Numerical simulations demonstrate the proposed algorithm can obtain about 10-dB lower SLL than the existing algorithms.展开更多
基金supported by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0564the National Natural Science Foundation of China under Grants No.U20B2043 and No.62001095.
文摘For the anti-interference/denoise purpose,it usually requires minimizing the sidelobe level(SLL)of a wide-beam pattern with a desired low nulling level(NL)in the nulling region.To realize such an objective,the shaped-beam pattern synthesis(SBPS)is the most commonly used approach.However,since the SBPS problem focuses on synthesizing a predetermined beam shape,the minimum SLL via this approach cannot ensure to obtain the maximum power gain.Conversely,it cannot obtain the lowest SLL with a certain power gain requirement.Based on such consideration,this paper tries to further minimize SLL of a wide-beam pattern with a desired low NL nulling region,by solving the power gain pattern synthesis(PGPS)problem.The PGPS problem selects the array excitation by directly optimizing the power gain.Hence,it has the potential to reduce SLL,when achieving the equal mainlobe power gain constraint via SBPS.An iterative algorithm which converts the primal optimization problem into convex sub-problems is proposed,resulting in an effective problem-solving scheme.Numerical simulations demonstrate the proposed algorithm can obtain about 10-dB lower SLL than the existing algorithms.