Based on the theory of vehicle-track coupled dynamics and gear system dynamics, a locomotive-track coupled spatial dynamics model is established by considering the dynamic effects of the gear transmission system. The ...Based on the theory of vehicle-track coupled dynamics and gear system dynamics, a locomotive-track coupled spatial dynamics model is established by considering the dynamic effects of the gear transmission system. The vibration responses of a locomotive's major components are then simulated using three locomotive-track models, namely the proposed dynamics model with the gear transmissions, a locomotive-track coupled dynamics model that considers the traction motor, and the classical Zhai's model. The locomotive dynamic responses of the three models are extracted and compared to reveal discrepancies between them so as to explore the dynamic effects of the power transmission system and clarify potential applications of these models. The results indicate that the dynamic effects of the gear transmissions have a negligible influence on the lateral vibrations of the locomotive components. However, they have obvious effects on the vertical and longitudinal vibrations of the wheelset and the traction motor. Another advantage of the locomotive dynamics model that considers the dynamic effects of the gear transmissions is that the dynamic performance of the drive system can be assessed in the vehicle vibration environment. This study provides theoretical references that can assist researchers in choosing the most appropriate locomotive dynamics model according to their specific research purpose.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51775453,51735012)the Sichuan Science and Technology Program(Grant No.2018JY0159)the open fund from the State Key Laboratory of Mechanical Transmissions of Chongqing University(Grant No.SKLMT-KFKT-201705)
文摘Based on the theory of vehicle-track coupled dynamics and gear system dynamics, a locomotive-track coupled spatial dynamics model is established by considering the dynamic effects of the gear transmission system. The vibration responses of a locomotive's major components are then simulated using three locomotive-track models, namely the proposed dynamics model with the gear transmissions, a locomotive-track coupled dynamics model that considers the traction motor, and the classical Zhai's model. The locomotive dynamic responses of the three models are extracted and compared to reveal discrepancies between them so as to explore the dynamic effects of the power transmission system and clarify potential applications of these models. The results indicate that the dynamic effects of the gear transmissions have a negligible influence on the lateral vibrations of the locomotive components. However, they have obvious effects on the vertical and longitudinal vibrations of the wheelset and the traction motor. Another advantage of the locomotive dynamics model that considers the dynamic effects of the gear transmissions is that the dynamic performance of the drive system can be assessed in the vehicle vibration environment. This study provides theoretical references that can assist researchers in choosing the most appropriate locomotive dynamics model according to their specific research purpose.
文摘通过线控转向(Steer-by-Wire,SBW)系统控制汽车方向盘转角提高某汽车在极限行驶中抗侧翻能力.建立SBW整车模型,基于紧急避让、紧急掉头和蛇行运动等3种危险操纵稳定性工况分析,得出该车易侧翻的结论.提出基于横向载荷转移率(Lateral Load Transfer Ratio,LTR)的车辆动态防侧翻控制算法,通过SIMULINK与Car Sim的联合仿真平台,建立转向优化控制模型.仿真结果表明在典型工况下该车防侧翻性能得到明显改善.