Instead of conventional East Asian winter monsoon indices (EAWMIs), we simply use two large-scale teleconnection patterns to represent long-term variations in the EAWM. First, the Urals blocking pattern index (UBI...Instead of conventional East Asian winter monsoon indices (EAWMIs), we simply use two large-scale teleconnection patterns to represent long-term variations in the EAWM. First, the Urals blocking pattern index (UBI) is closely related to cold air advection from the high latitudes towards western Siberia, such that it shows an implicit linkage with the Siberian high intensity and the surface air temperature (SAT) variations north of 40°N in the EAWM region. Second, the well-known western Pacific teleconnection index (WPI) is connected with the meridional displacement of the East Asian jet stream and the East Asian trough. This is strongly related to the SAT variations in the coastal area south of 40°N in the EAWM region. The temperature variation in the EAWM region is also represented by the two dominant temperature modes, which are called the northern temperature mode (NTM) and the southern temperature mode (STM). Compared to 19 existing EAWMIs and other well-known teleconnection patterns, the UBI shows the strongest correlation with the NTM, while the WPI shows an equally strong correlation with the STM as four EAWMIs. The UBI-NTM and WPI-STM relationships are robust when the correlation analysis is repeated by (1) the 31-year running correlation and (2) the 8-year high-pass and low-pass filter. Hence, these results are useful for analyzing the large-scale teleconnections of the EAWM and for evaluating this issue in climate models. Int particular, more studies should focus on the teleconnection patterns over extratropical Eurasia.展开更多
基金supported by Shenzhen Research Project(Grant No.GJHS20120820144245169)the French/Hong Kong Joint Research Project(No.F-HK002/12T)
文摘Instead of conventional East Asian winter monsoon indices (EAWMIs), we simply use two large-scale teleconnection patterns to represent long-term variations in the EAWM. First, the Urals blocking pattern index (UBI) is closely related to cold air advection from the high latitudes towards western Siberia, such that it shows an implicit linkage with the Siberian high intensity and the surface air temperature (SAT) variations north of 40°N in the EAWM region. Second, the well-known western Pacific teleconnection index (WPI) is connected with the meridional displacement of the East Asian jet stream and the East Asian trough. This is strongly related to the SAT variations in the coastal area south of 40°N in the EAWM region. The temperature variation in the EAWM region is also represented by the two dominant temperature modes, which are called the northern temperature mode (NTM) and the southern temperature mode (STM). Compared to 19 existing EAWMIs and other well-known teleconnection patterns, the UBI shows the strongest correlation with the NTM, while the WPI shows an equally strong correlation with the STM as four EAWMIs. The UBI-NTM and WPI-STM relationships are robust when the correlation analysis is repeated by (1) the 31-year running correlation and (2) the 8-year high-pass and low-pass filter. Hence, these results are useful for analyzing the large-scale teleconnections of the EAWM and for evaluating this issue in climate models. Int particular, more studies should focus on the teleconnection patterns over extratropical Eurasia.