Based on the polarization analysis of teleseismic SKS waveform data recorded at 94 broadband seis-mic stations in Sichuan and adjacent regions, the SKS fast-wave direction and the delay time between the fast and slow ...Based on the polarization analysis of teleseismic SKS waveform data recorded at 94 broadband seis-mic stations in Sichuan and adjacent regions, the SKS fast-wave direction and the delay time between the fast and slow shear waves were determined at each station using the grid searching method of minimum transverse energy and the stacking analysis method, and the image of upper mantle anisot-ropy was acquired. The fast-wave polarization directions are mainly NW-SE in the study area, NWW-SEE to its northeast and NS to its west. The delay time falls into the interval [0.47 s, 1.68 s]. The spatial variation of the fast-wave directions is similar to the variation of GPS velocity directions. The anisotropic image indicates that the regional tectonic stress field has resulted in deformation and flow of upper mantle material, and made the alignment of upper mantle peridotite lattice parallel to the di-rection of material deformation. The crust-upper mantle deformation in Sichuan and adjacent regions accords with the mode of vertically coherent deformation. In the eastern Tibetan Plateau, the crustal material was extruded to east or southeast due to SE traction force of the upper mantle material. The extrusion might be obstructed by a rigid block under the Sichuan Basin and the crust has been de-formed. After a long-term accumulation of tectonic strain energy, the accumulative energy suddenly released in Yingxiu town of the Longmenshan region, and Wenchuan MS8.0 earthquake occurred.展开更多
Sliding-window cross-correlation method is firstly adopted to identify sPn phase, and to constrain focal depth from regional seismograms, by measuring the time separation between sPn and Pn phases. We present the foca...Sliding-window cross-correlation method is firstly adopted to identify sPn phase, and to constrain focal depth from regional seismograms, by measuring the time separation between sPn and Pn phases. We present the focal depths of the 17 moderate-sized aftershocks (MS≥5.0) of the Wenchuan MS8.0 earth-quake, using the data recorded by the regional seismic broadband networks of Shaanxi, Qinghai, Gansu, Yunnan and Sichuan. Our results show focal depths of aftershocks range from 8 to 20 km, and tend to cluster at two average depths, separate at 32.5°N, i.e., 11 km to the south and 17 km to the north, indicating that these aftershocks are origin of upper-to-middle crust. Combined with other results, we suggest that the Longmenshan fault is not a through-going crustal fault and the Pingwu-Qingchuan fault may be not the northward extension of the Longmenshan thrust fault.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 40334041 and 40774037)the Special Project for the Fundamental R & D of Institute of Geophysics, China Earthquake Administration (Grant No. DQJB06B06)the Special Program of the Ministry of Science and Technology of China (Grant No. 2006FY110100)
文摘Based on the polarization analysis of teleseismic SKS waveform data recorded at 94 broadband seis-mic stations in Sichuan and adjacent regions, the SKS fast-wave direction and the delay time between the fast and slow shear waves were determined at each station using the grid searching method of minimum transverse energy and the stacking analysis method, and the image of upper mantle anisot-ropy was acquired. The fast-wave polarization directions are mainly NW-SE in the study area, NWW-SEE to its northeast and NS to its west. The delay time falls into the interval [0.47 s, 1.68 s]. The spatial variation of the fast-wave directions is similar to the variation of GPS velocity directions. The anisotropic image indicates that the regional tectonic stress field has resulted in deformation and flow of upper mantle material, and made the alignment of upper mantle peridotite lattice parallel to the di-rection of material deformation. The crust-upper mantle deformation in Sichuan and adjacent regions accords with the mode of vertically coherent deformation. In the eastern Tibetan Plateau, the crustal material was extruded to east or southeast due to SE traction force of the upper mantle material. The extrusion might be obstructed by a rigid block under the Sichuan Basin and the crust has been de-formed. After a long-term accumulation of tectonic strain energy, the accumulative energy suddenly released in Yingxiu town of the Longmenshan region, and Wenchuan MS8.0 earthquake occurred.
基金the National Natural Science Foundation of China (Grant Nos. 40604009 and 40574040)Special Project for the Fundamental R & D of Institute of Geophysics, China Earthquake Administration (Grant No.DQJB08B20)
文摘Sliding-window cross-correlation method is firstly adopted to identify sPn phase, and to constrain focal depth from regional seismograms, by measuring the time separation between sPn and Pn phases. We present the focal depths of the 17 moderate-sized aftershocks (MS≥5.0) of the Wenchuan MS8.0 earth-quake, using the data recorded by the regional seismic broadband networks of Shaanxi, Qinghai, Gansu, Yunnan and Sichuan. Our results show focal depths of aftershocks range from 8 to 20 km, and tend to cluster at two average depths, separate at 32.5°N, i.e., 11 km to the south and 17 km to the north, indicating that these aftershocks are origin of upper-to-middle crust. Combined with other results, we suggest that the Longmenshan fault is not a through-going crustal fault and the Pingwu-Qingchuan fault may be not the northward extension of the Longmenshan thrust fault.