In this paper we consider operators with endpoint singularities generated by linear fractional Carleman shift in weighted Hölder spaces. Such operators play an important role in the study of algebras generate...In this paper we consider operators with endpoint singularities generated by linear fractional Carleman shift in weighted Hölder spaces. Such operators play an important role in the study of algebras generated by the operators of singular integration and multiplication by function. For the considered operators, we obtained more precise relations between norms of integral operators with local singularities in weighted Lebesgue spaces and norms in weighted Hölder spaces, making use of previously obtained general results. We prove the boundedness of operators with linear fractional singularities.展开更多
We prove the boundedness of the maximal operator Mr in the spaces L^p(·)(Г,p) with variable exponent p(t) and power weight p on an arbitrary Carleson curve under the assumption that p(t) satisfies the lo...We prove the boundedness of the maximal operator Mr in the spaces L^p(·)(Г,p) with variable exponent p(t) and power weight p on an arbitrary Carleson curve under the assumption that p(t) satisfies the log-condition on Г. We prove also weighted Sobolev type L^p(·)(Г, p) → L^q(·)(Г, p)-theorem for potential operators on Carleson curves.展开更多
基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Function spaces adapted to multi-level anisotropic ellipsoid covers and the boundedness of related operators”(2020D01C048)the National Natural Science Foundation of the People’s Republic of China“Real-variable theory of variable exponential functions on anisotropic Euclidean spaces and its applications”(12261083).
文摘In this paper we consider operators with endpoint singularities generated by linear fractional Carleman shift in weighted Hölder spaces. Such operators play an important role in the study of algebras generated by the operators of singular integration and multiplication by function. For the considered operators, we obtained more precise relations between norms of integral operators with local singularities in weighted Lebesgue spaces and norms in weighted Hölder spaces, making use of previously obtained general results. We prove the boundedness of operators with linear fractional singularities.
文摘We prove the boundedness of the maximal operator Mr in the spaces L^p(·)(Г,p) with variable exponent p(t) and power weight p on an arbitrary Carleson curve under the assumption that p(t) satisfies the log-condition on Г. We prove also weighted Sobolev type L^p(·)(Г, p) → L^q(·)(Г, p)-theorem for potential operators on Carleson curves.