Sea ice type is an important factor for accurately calculating sea ice parameters such as sea ice concentration, sea ice area and sea ice thickness using satellite remote sensing data. In this study, sea ice in the We...Sea ice type is an important factor for accurately calculating sea ice parameters such as sea ice concentration, sea ice area and sea ice thickness using satellite remote sensing data. In this study, sea ice in the Weddell Sea was classified from scatterometer data by the histogram threshold method and the Spreen model method, and evaluated and validated with the Antarctic Sea Ice Processes and Climate(ASPeCt) sea ice type ship-based observations. The results show that the two methods can both distinguish multi-year(MY) ice and first-year(FY) ice during the ice growth season, and that the histogram threshold method has a relatively larger MY ice classification extent than the Spreen model. The classification accuracy of the histogram threshold method is 77.8%, while the Spreen model method accuracy is 80.3% compared with the ship-based observations, thus indicating that the Spreen model method is better for discriminating MY ice from FY ice from scatterometer data. These results provide a basis and reference for further retrieval of long-time sea ice type information for the whole Antarctica.展开更多
The MSA and nssSO 2- 4 concentration data from the ice cores and from atmospheric aerosols of the regions surrounding Weddell Sea have been analyzed in the present paper. The results suggest that the high concen...The MSA and nssSO 2- 4 concentration data from the ice cores and from atmospheric aerosols of the regions surrounding Weddell Sea have been analyzed in the present paper. The results suggest that the high concentration of biogenic sulphur in the snow and ice as well as in the atmospheric aerosols reflects the proximity of the Weddell Sea even though a distinct strength discrepancy exists in the productivity among the areas. The snow/ice shows that the production seems to be higher in the middle of the Antarctic Peninsula than near the Filchner Ronne ice shelf. Despite the factors impacting on the transportation and deposition processes of biogenic surlphur, the concentration of MSA and nssSO 2- 4 in snow and ice shows a regular spatial distribution: decreasing with the distance from the open sea and the altitude above sea level. Nevertheless, below a certain height, the “altitude effect” is no longer significant. The “displacement” of seasonality for MSA concentration observed in ice cores of the regions has been discussed. The “out of phase” pattern in surface layer is attributed to the modification by prevailing meteorological condition to the transport and deposition process; while “relocation” in the deep layers may be caused by migration, a mechanism for which is to be further investigated.The comparative study of the atmospheric and snow/ice samples implies that at the high altitude like the Weddell Sea the atmospheric signal of SO 2- 4 and MSA could be somewhat muted in the snow samples. But the seasonal variations in the airborn sulphate and MSA are reasonably well reproduced in the surface snow, for temporal and spacial distribution. The very close ratio of MSA to nssSO 2- 4 (or to SO 2- 4) of atmospheric aerosol and snow/ice sample is indicative of weak, if any, fraction between the two species during the scavenging and deposition processes. This could serve as the internal cause to explain the relative stable MSA/nssSO 2- 4 ratio, both for atmosphe展开更多
Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline str...Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10^(-7))-O(10^(-6)) W/kg and O(10^(-3))-O(10^(-2)) m^2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10^(-8)) to O(10^(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10^(-6)) to O(10^(-5)) m^2/s.In the marginal ice zone,K is vertically stable with the order of10^(-4) m^2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.展开更多
基金the supports from the National Natural Science Foundation of China (Grant nos. 41606215 and 41576188)the National Key Research and Development Program of China (Grant no. 2017YFA0603104)+3 种基金the fund of SOA Key Laboratory for Polar Science (Grant no. PS1502)the fund of Key Laboratory of Global Change and Marine-Atmospheric Chemistry, SOA (Grant no. GCMAC1504)the Fundamental Research Funds for the Central Universities (Grant no. 2042016kf0038)the Chinese Postdoctoral Science Foundation Funded Project (Grant no. 2016M602342)
文摘Sea ice type is an important factor for accurately calculating sea ice parameters such as sea ice concentration, sea ice area and sea ice thickness using satellite remote sensing data. In this study, sea ice in the Weddell Sea was classified from scatterometer data by the histogram threshold method and the Spreen model method, and evaluated and validated with the Antarctic Sea Ice Processes and Climate(ASPeCt) sea ice type ship-based observations. The results show that the two methods can both distinguish multi-year(MY) ice and first-year(FY) ice during the ice growth season, and that the histogram threshold method has a relatively larger MY ice classification extent than the Spreen model. The classification accuracy of the histogram threshold method is 77.8%, while the Spreen model method accuracy is 80.3% compared with the ship-based observations, thus indicating that the Spreen model method is better for discriminating MY ice from FY ice from scatterometer data. These results provide a basis and reference for further retrieval of long-time sea ice type information for the whole Antarctica.
文摘The MSA and nssSO 2- 4 concentration data from the ice cores and from atmospheric aerosols of the regions surrounding Weddell Sea have been analyzed in the present paper. The results suggest that the high concentration of biogenic sulphur in the snow and ice as well as in the atmospheric aerosols reflects the proximity of the Weddell Sea even though a distinct strength discrepancy exists in the productivity among the areas. The snow/ice shows that the production seems to be higher in the middle of the Antarctic Peninsula than near the Filchner Ronne ice shelf. Despite the factors impacting on the transportation and deposition processes of biogenic surlphur, the concentration of MSA and nssSO 2- 4 in snow and ice shows a regular spatial distribution: decreasing with the distance from the open sea and the altitude above sea level. Nevertheless, below a certain height, the “altitude effect” is no longer significant. The “displacement” of seasonality for MSA concentration observed in ice cores of the regions has been discussed. The “out of phase” pattern in surface layer is attributed to the modification by prevailing meteorological condition to the transport and deposition process; while “relocation” in the deep layers may be caused by migration, a mechanism for which is to be further investigated.The comparative study of the atmospheric and snow/ice samples implies that at the high altitude like the Weddell Sea the atmospheric signal of SO 2- 4 and MSA could be somewhat muted in the snow samples. But the seasonal variations in the airborn sulphate and MSA are reasonably well reproduced in the surface snow, for temporal and spacial distribution. The very close ratio of MSA to nssSO 2- 4 (or to SO 2- 4) of atmospheric aerosol and snow/ice sample is indicative of weak, if any, fraction between the two species during the scavenging and deposition processes. This could serve as the internal cause to explain the relative stable MSA/nssSO 2- 4 ratio, both for atmosphe
基金Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHINARE-01-01and CHINARE-04-01
文摘Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10^(-7))-O(10^(-6)) W/kg and O(10^(-3))-O(10^(-2)) m^2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10^(-8)) to O(10^(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10^(-6)) to O(10^(-5)) m^2/s.In the marginal ice zone,K is vertically stable with the order of10^(-4) m^2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.