The scientific achievements of travelling waves in a barotropic atmosphere are introduced, including i) the existence conditions of periodic solutions (wavetrain solutions) and solitary wave solutions (pulse solution... The scientific achievements of travelling waves in a barotropic atmosphere are introduced, including i) the existence conditions of periodic solutions (wavetrain solutions) and solitary wave solutions (pulse solutions), together with the solution finding methods and a series of related problems, ii) seeking solutions of monotonous wave (wave front) and of nonmonotonous travelling wave (oscillatory wave) by using phase plane shooting technique and hi) progress in the study of travelling wave solution at home and abroad. The investigation of travelling wave solutions in recent years has been found in mathematics, physics, chemistry, biology and other sciences. Over the past decade the problem has been the subject of much interest and become an important area of research. So it is no doubt of great significance to investigate the travelling wave solutions and thereby explain phenomena of weather.展开更多
This note starts with the partial differential equations of seismic waves in two-domain anisotropic media,and establishes the normal equation of seismic wave fronts in anisotropic media. By using the characteristic be...This note starts with the partial differential equations of seismic waves in two-domain anisotropic media,and establishes the normal equation of seismic wave fronts in anisotropic media. By using the characteristic belt method to solve the one-order par-展开更多
The paper presents the effect of a rigid boundary on the propagation of torsional surface waves in a porous elastic layer over a porous elastic half-space using the mechanics of the medium derived by Cowin and Nunzia...The paper presents the effect of a rigid boundary on the propagation of torsional surface waves in a porous elastic layer over a porous elastic half-space using the mechanics of the medium derived by Cowin and Nunziato (Cowin, S. C. and Nunziato, J. W. Linear elastic materials with voids. Journal of Elasticity, 13(2), 125-147 (1983)). The velocity equation is derived, and the results are discussed. It is observed that there may be two torsional surface wave fronts in the medium whereas three wave fronts of torsional surface waves in the absence of the rigid boundary plane given by Dey et al. (Dey, S., Gupta, S., Gupta, A. K., Kar, S. K., and De, P. K. Propagation of torsional surface waves in an elastic layer with void pores over an elastic half-space with void pores. Tamkang Journal of Science and Engineering, 6(4), 241-249 (2003)). The results also reveal that in the porous layer, the Love wave is also available along with the torsional surface waves. It is remarkable that the phase speed of the Love wave in a porous layer with a rigid surface is different from that in a porous layer with a free surface. The torsional waves are observed to be dispersive in nature, and the velocity decreases as the oscillation frequency increases.展开更多
基金The work is supported by the National Natural Science Foundation of China and LASG.
文摘 The scientific achievements of travelling waves in a barotropic atmosphere are introduced, including i) the existence conditions of periodic solutions (wavetrain solutions) and solitary wave solutions (pulse solutions), together with the solution finding methods and a series of related problems, ii) seeking solutions of monotonous wave (wave front) and of nonmonotonous travelling wave (oscillatory wave) by using phase plane shooting technique and hi) progress in the study of travelling wave solution at home and abroad. The investigation of travelling wave solutions in recent years has been found in mathematics, physics, chemistry, biology and other sciences. Over the past decade the problem has been the subject of much interest and become an important area of research. So it is no doubt of great significance to investigate the travelling wave solutions and thereby explain phenomena of weather.
基金National Natural Science Foundation of ChinaFunds of Chinese Academy of Sciences for Youths.
文摘This note starts with the partial differential equations of seismic waves in two-domain anisotropic media,and establishes the normal equation of seismic wave fronts in anisotropic media. By using the characteristic belt method to solve the one-order par-
基金supported by the Department of Science and Technology of New Delhi of India(No. SR/S4/ES-246/2006)
文摘The paper presents the effect of a rigid boundary on the propagation of torsional surface waves in a porous elastic layer over a porous elastic half-space using the mechanics of the medium derived by Cowin and Nunziato (Cowin, S. C. and Nunziato, J. W. Linear elastic materials with voids. Journal of Elasticity, 13(2), 125-147 (1983)). The velocity equation is derived, and the results are discussed. It is observed that there may be two torsional surface wave fronts in the medium whereas three wave fronts of torsional surface waves in the absence of the rigid boundary plane given by Dey et al. (Dey, S., Gupta, S., Gupta, A. K., Kar, S. K., and De, P. K. Propagation of torsional surface waves in an elastic layer with void pores over an elastic half-space with void pores. Tamkang Journal of Science and Engineering, 6(4), 241-249 (2003)). The results also reveal that in the porous layer, the Love wave is also available along with the torsional surface waves. It is remarkable that the phase speed of the Love wave in a porous layer with a rigid surface is different from that in a porous layer with a free surface. The torsional waves are observed to be dispersive in nature, and the velocity decreases as the oscillation frequency increases.