Two mathematical models for combined refraction-diffraction of regular and irregular waves on non-uniform current in water of slowly varying topography are presented in this paper. Model I is derived by wave theory an...Two mathematical models for combined refraction-diffraction of regular and irregular waves on non-uniform current in water of slowly varying topography are presented in this paper. Model I is derived by wave theory and variational principle separately. It has two kinds of expressions including the dissipation term. Model n is based on the energy conservation equation with energy flux through the wave crest lines in orthogonal curvilinear coordinates and the wave kinematic conservation equation. The analysis and comparison and special cases of these two models are also given.展开更多
In this review, acritical look at the research progress ofexperimentalsolid mechanics in China for the past years is presented. Issues are discussed of the discovery and development of new fundamental methods and tech...In this review, acritical look at the research progress ofexperimentalsolid mechanics in China for the past years is presented. Issues are discussed of the discovery and development of new fundamental methods and techniques versus performance benchmarking for many of their applications. Included herein are photoelasticity and various forms of modern photomechanics, acoustical techniques, image processing and videometrics, radial and spectrum techniques, and experimental mechanics on micro/nano scale. It is also noticed that both the ever developed instrumentation and specialized synthetical techniques have played important roles in advancing experimental mechanics in scientific researches and industrial applications. Finally, an attempt is made to look into the future of experimental solid mechanics with personal opinions offered on what the future trends will be for the researches in the field.展开更多
This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are deriv...This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are derived based on Biot's theory. The scattered waves are constructed using fictitious wave sources close to the boundary of the cavity, and their magnitudes are determined by the boundary conditions. Verification of the accuracy is performed by: (1) checking the satisfaction extent of the boundary conditions, (2) comparing the degenerated solutions of a single-phased case with well- known solutions, and (3) examining the numerical stability of the solutions. The nature of diffraction of plane SV waves around a cavity in a poroelastic half-space is investigated by numerical examples.展开更多
This paper presents a closed-form solution for diffraction of plane SH waves by a semi-circular cavity in half-space by using wave function expansion method. Accuracy of the solution is checked by the displacement res...This paper presents a closed-form solution for diffraction of plane SH waves by a semi-circular cavity in half-space by using wave function expansion method. Accuracy of the solution is checked by the displacement residual and stress residual along the boundaries. Numerical results show that there are notable differences for response amplitudes between a semi-circular cavity and a whole-circular cavity in a half-space.展开更多
This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional a...This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional and shear wave sources in poroelastic half-space are derived based on Biot's theory. The scattered waves are constructed using the fictitious wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the comparison between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability of the method.展开更多
An efficient numerical model for wave refraction, diffraction and reflection is presented in this paper. In the model the modified time-dependent mild-slope equation is transformed into an evolution equation and an im...An efficient numerical model for wave refraction, diffraction and reflection is presented in this paper. In the model the modified time-dependent mild-slope equation is transformed into an evolution equation and an improved ADI method involving a relaxation factor is adopted to solve it. The method has the advantage of improving the numerical stability and convergence rate by properly determining the relaxation factor. The range of the relaxation factor making the differential scheme unconditionally stable is determined by stability analysis. Several verifications are performed to examine the accuracy of the present model. The numerical results coincide with the analytic solutions or experimental data very well and the computer time is reduced.展开更多
基金This work was financially supported by the Science Foundation of National Education Committee of China
文摘Two mathematical models for combined refraction-diffraction of regular and irregular waves on non-uniform current in water of slowly varying topography are presented in this paper. Model I is derived by wave theory and variational principle separately. It has two kinds of expressions including the dissipation term. Model n is based on the energy conservation equation with energy flux through the wave crest lines in orthogonal curvilinear coordinates and the wave kinematic conservation equation. The analysis and comparison and special cases of these two models are also given.
基金Project supported by the NSFC (Nos.10472112,19232020,10627201,10972113, 90916010 and 10732080)the National Basic Research Program of China (Nos.2007CB936803 and 2010CB631005)SRFDP (Nos.20070003053 and 20090002110048)
文摘In this review, acritical look at the research progress ofexperimentalsolid mechanics in China for the past years is presented. Issues are discussed of the discovery and development of new fundamental methods and techniques versus performance benchmarking for many of their applications. Included herein are photoelasticity and various forms of modern photomechanics, acoustical techniques, image processing and videometrics, radial and spectrum techniques, and experimental mechanics on micro/nano scale. It is also noticed that both the ever developed instrumentation and specialized synthetical techniques have played important roles in advancing experimental mechanics in scientific researches and industrial applications. Finally, an attempt is made to look into the future of experimental solid mechanics with personal opinions offered on what the future trends will be for the researches in the field.
基金Program for New Century Excellent Talents in University Under Grant No. NCET-05-0248the Key Program for Applied Basic Research of Tianjin Municipality Under Grant No. 07JCZDJC10100
文摘This paper presents an indirect boundary integration equation method for diffraction of plane SV waves by a 2-D cavity in a poroelastic half-space.The Green's functions of compressive and shear wave sources are derived based on Biot's theory. The scattered waves are constructed using fictitious wave sources close to the boundary of the cavity, and their magnitudes are determined by the boundary conditions. Verification of the accuracy is performed by: (1) checking the satisfaction extent of the boundary conditions, (2) comparing the degenerated solutions of a single-phased case with well- known solutions, and (3) examining the numerical stability of the solutions. The nature of diffraction of plane SV waves around a cavity in a poroelastic half-space is investigated by numerical examples.
基金supported by National Natural Science Foundation of China (No. 50978183)Tianjin Natural Science Foundation (No. 07JCZDJC10100)
文摘This paper presents a closed-form solution for diffraction of plane SH waves by a semi-circular cavity in half-space by using wave function expansion method. Accuracy of the solution is checked by the displacement residual and stress residual along the boundaries. Numerical results show that there are notable differences for response amplitudes between a semi-circular cavity and a whole-circular cavity in a half-space.
基金support from the Program for New Century Excellent Talents in University (NCET-05-0248)the Key Program for Applied Basic Research of Tianjin Municipality (07JCZDJC10100)
文摘This paper presents an indirect boundary integration equation method for diffraction of plane P waves by a two-dimensional canyon of arbitrary shape in poroelastic half-space. The Green's functions of compressional and shear wave sources in poroelastic half-space are derived based on Biot's theory. The scattered waves are constructed using the fictitious wave sources close to the boundary of the canyon, and magnitude of the fictitious wave sources are determined by the boundary conditions. The precision of the method is verified by the satisfaction extent of boundary conditions, the comparison between the degenerated solutions of single-phased half-space and the well-known solutions, and the numerical stability of the method.
文摘An efficient numerical model for wave refraction, diffraction and reflection is presented in this paper. In the model the modified time-dependent mild-slope equation is transformed into an evolution equation and an improved ADI method involving a relaxation factor is adopted to solve it. The method has the advantage of improving the numerical stability and convergence rate by properly determining the relaxation factor. The range of the relaxation factor making the differential scheme unconditionally stable is determined by stability analysis. Several verifications are performed to examine the accuracy of the present model. The numerical results coincide with the analytic solutions or experimental data very well and the computer time is reduced.