A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was a...A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was achieved through advances in our understanding of the formation mechanism of debris flow.To expand the applicable spatial scale of this forecasting model,a method of identifying potential debris flow watersheds was used to locate areas vulnerable to debris flow within a forecast region.Using these watersheds as forecasting units and a prediction method based on the water-soil coupling mechanism,a new forecasting method of debris flow at the regional scale was established.In order to test the prediction ability of this new forecasting method,the Sichuan province,China was selected as a study zone and the large-scale debris flow disasters attributable to heavy rainfall in this region on July 9,2013 were taken as the study case.According to debris flow disaster data on July 9,2013 which were provided by the geo-environmental monitoring station of Sichuan province,there were 252 watersheds in which debris flow events actually occurred.The current model predicted that 265 watersheds were likely to experience a debris flow event.Among these,43 towns including 204 debrisflow watersheds were successfully forecasted and 24 towns including 48 watersheds failed.The false prediction rate and failure prediction rate of thisforecast model were 23% and 19%,respectively.The results show that this method is more accurate and more applicable than traditional methods.展开更多
Jets caused by burst tubes erode the surrounding soil, eventually leading to issues such as ground collapse. It is therefore highly important to study the mechanisms of soil erosion caused by jets after pipeline leaka...Jets caused by burst tubes erode the surrounding soil, eventually leading to issues such as ground collapse. It is therefore highly important to study the mechanisms of soil erosion caused by jets after pipeline leakage. To investigate the water-soil interaction mechanisms of pipe leakage, this study used transparent soil and developed a three-dimensional experimental device to observe the fluidization process. Changes in the boundary of the fluidization transition area were investigated, and a formula for calculating the soil damage area was derived. The results showed three different shapes of the fluidized cavity appearing in the fluidization process. The particles initially moved upward and then gradually transitioned into a state of backflow. The effects of particle size, upper load, and porosity on fluidization were also analyzed. It was found that soil with a large particle size and a lower porosity under a heavy upper load can effectively restrain fluidization. Therefore, large-diameter and dense soil can be used as pipe-covering material.展开更多
Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil...Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil-water interaction mechanism of the debris flows were analyzed from both macroscopic and microscopic points of view respectively using high digital imaging equipment and micro-structure analysis software Geodip. The test results indicate that the forming process of debris flow mainly consists of three stages, namely the infiltration and softening stage, the overall slide stage, and debris flow stage. The essence of simulated coarse sand slope forming debris flow is that local fluidization cause slope to wholly slide. The movement of small particles forms a transient stagnant layer with increasing saturation, causing soil shear strength lost and local fluidization. When the driving force of the saturated soil exceeds the resisting force, debris flow happens on the coarse sand slope immediately.展开更多
Cadmium (Cd) is a toxic metal with high mobility from soil and known translocation into plants (Song et al., 2015).Because the main source of human exposure to Cd is from food consumption, there has been increased res...Cadmium (Cd) is a toxic metal with high mobility from soil and known translocation into plants (Song et al., 2015).Because the main source of human exposure to Cd is from food consumption, there has been increased research examining Cd uptake in agricultural plants (Li et al., 2014;Rizwan et al., 2016;Song et al., 2015).展开更多
[Objective]The study aimed to analyze the release of total phosphorous from Wensi Lake sediment into water.[Method]Though simulation experiments in a laboratory,we studied the effects of various environmental factors ...[Objective]The study aimed to analyze the release of total phosphorous from Wensi Lake sediment into water.[Method]Though simulation experiments in a laboratory,we studied the effects of various environmental factors like water-soil ratio,water temperature,pH,disturbance and dissolved oxygen(DO) on TP release from Wensi Lake sediment.[Result]The higher the water-soil ratio,the less TP released from the sediment;temperature increase sped up TP release from the sediment;when pH of overlying water was 6,the amount of released TP was the lowest;disturbing the overlying water accelerate TP release from the sediment;the lower the DO content,the larger the released TP.[Conclusion]The research could provide scientific references for controlling the pollution of Wensi Lake.展开更多
基金supported by the foundation of the Research Fund for Commonweal Trades (Meteorology) (Grant No. GYHY201006039)the International Cooperation Project of the Department of Science and Technology of Sichuan Province (Grant No. 2009HH0005)
文摘A debris flow forecast model based on a water-soil coupling mechanism that takes the debrisflow watershed as a basic forecast unit was established here for the prediction of disasters at the watershed scale.This was achieved through advances in our understanding of the formation mechanism of debris flow.To expand the applicable spatial scale of this forecasting model,a method of identifying potential debris flow watersheds was used to locate areas vulnerable to debris flow within a forecast region.Using these watersheds as forecasting units and a prediction method based on the water-soil coupling mechanism,a new forecasting method of debris flow at the regional scale was established.In order to test the prediction ability of this new forecasting method,the Sichuan province,China was selected as a study zone and the large-scale debris flow disasters attributable to heavy rainfall in this region on July 9,2013 were taken as the study case.According to debris flow disaster data on July 9,2013 which were provided by the geo-environmental monitoring station of Sichuan province,there were 252 watersheds in which debris flow events actually occurred.The current model predicted that 265 watersheds were likely to experience a debris flow event.Among these,43 towns including 204 debrisflow watersheds were successfully forecasted and 24 towns including 48 watersheds failed.The false prediction rate and failure prediction rate of thisforecast model were 23% and 19%,respectively.The results show that this method is more accurate and more applicable than traditional methods.
基金supported by the National Natural Science Foundation of China(Grant No.52070165)the Major Science and Technology Project of Zhejiang Province,China(Grant No.2015C03015).
文摘Jets caused by burst tubes erode the surrounding soil, eventually leading to issues such as ground collapse. It is therefore highly important to study the mechanisms of soil erosion caused by jets after pipeline leakage. To investigate the water-soil interaction mechanisms of pipe leakage, this study used transparent soil and developed a three-dimensional experimental device to observe the fluidization process. Changes in the boundary of the fluidization transition area were investigated, and a formula for calculating the soil damage area was derived. The results showed three different shapes of the fluidized cavity appearing in the fluidization process. The particles initially moved upward and then gradually transitioned into a state of backflow. The effects of particle size, upper load, and porosity on fluidization were also analyzed. It was found that soil with a large particle size and a lower porosity under a heavy upper load can effectively restrain fluidization. Therefore, large-diameter and dense soil can be used as pipe-covering material.
基金Funded by National Natural Science Foundation of China(Grant No.41272296)
文摘Using the self-developed visualization test apparatus, centrifuge model tests at 20 g were carried out to research the macro and microscopic formation mechanism of coarse sand debris flows. The formation mode and soil-water interaction mechanism of the debris flows were analyzed from both macroscopic and microscopic points of view respectively using high digital imaging equipment and micro-structure analysis software Geodip. The test results indicate that the forming process of debris flow mainly consists of three stages, namely the infiltration and softening stage, the overall slide stage, and debris flow stage. The essence of simulated coarse sand slope forming debris flow is that local fluidization cause slope to wholly slide. The movement of small particles forms a transient stagnant layer with increasing saturation, causing soil shear strength lost and local fluidization. When the driving force of the saturated soil exceeds the resisting force, debris flow happens on the coarse sand slope immediately.
文摘Cadmium (Cd) is a toxic metal with high mobility from soil and known translocation into plants (Song et al., 2015).Because the main source of human exposure to Cd is from food consumption, there has been increased research examining Cd uptake in agricultural plants (Li et al., 2014;Rizwan et al., 2016;Song et al., 2015).
文摘[Objective]The study aimed to analyze the release of total phosphorous from Wensi Lake sediment into water.[Method]Though simulation experiments in a laboratory,we studied the effects of various environmental factors like water-soil ratio,water temperature,pH,disturbance and dissolved oxygen(DO) on TP release from Wensi Lake sediment.[Result]The higher the water-soil ratio,the less TP released from the sediment;temperature increase sped up TP release from the sediment;when pH of overlying water was 6,the amount of released TP was the lowest;disturbing the overlying water accelerate TP release from the sediment;the lower the DO content,the larger the released TP.[Conclusion]The research could provide scientific references for controlling the pollution of Wensi Lake.