This study is aimed at evaluating alternative designs of waste stabilization ponds (WSPs) and constructed wetlands (CWs) for Kaputiei Housing Estate consisting of 2000 low cost housing units in Kenya. The entire analy...This study is aimed at evaluating alternative designs of waste stabilization ponds (WSPs) and constructed wetlands (CWs) for Kaputiei Housing Estate consisting of 2000 low cost housing units in Kenya. The entire analysis was carried out by simulating the effectiveness and purification efficiencies of WSPs and CWs in terms of Biological Oxygen Demand (BOD) reduction and faecal coliform (FC) removal under different scenarios of water treatment systems that included Re-sizing of the initial sewage treatment system, optimizing the design of the initial system and design of hybrid system for the estate. The graphic comparison of the simulated parameters under different scenarios showed that a hybrid design that combines both the WSPs and CWS provides an effluent BOD of 20 mg/l and 195 FC per 100 ml that meets the standard effluent discharge that is acceptable for unrestricted crop irrigation and thus will be reused in the housing estate for kitchen gardening and agroforestry.展开更多
Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of t...Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of the effluent from waste stabilisation ponds and 400 m beyond discharge point. This was achieved by evaluating concentrations of seven parameters from soil, eleven physiochemical parameters from effluent and four microbiological parameters. Corresponding water quality indices calculated from microbiological parameters were 854, 142, 96 and 1539 respectively, at sites 1, 2, 3 and 4. Reductions of magnesium, zinc, lead, sodium adsorption ratio, sodium and electrical conductivity in soil samples at site 4 were 15.5%, 57%, 81.6%, 93.5%, 93.5% and 99% respectively. The percentage increases were 21.4% and 185% respectively, for calcium and iron ions. It can be concluded that the water quality index of the waste stabilisation ponds is unsuitable for discharge into the environment. However, the results revealed improved quality downstream of discharge point.展开更多
文摘This study is aimed at evaluating alternative designs of waste stabilization ponds (WSPs) and constructed wetlands (CWs) for Kaputiei Housing Estate consisting of 2000 low cost housing units in Kenya. The entire analysis was carried out by simulating the effectiveness and purification efficiencies of WSPs and CWs in terms of Biological Oxygen Demand (BOD) reduction and faecal coliform (FC) removal under different scenarios of water treatment systems that included Re-sizing of the initial sewage treatment system, optimizing the design of the initial system and design of hybrid system for the estate. The graphic comparison of the simulated parameters under different scenarios showed that a hybrid design that combines both the WSPs and CWS provides an effluent BOD of 20 mg/l and 195 FC per 100 ml that meets the standard effluent discharge that is acceptable for unrestricted crop irrigation and thus will be reused in the housing estate for kitchen gardening and agroforestry.
文摘Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of the effluent from waste stabilisation ponds and 400 m beyond discharge point. This was achieved by evaluating concentrations of seven parameters from soil, eleven physiochemical parameters from effluent and four microbiological parameters. Corresponding water quality indices calculated from microbiological parameters were 854, 142, 96 and 1539 respectively, at sites 1, 2, 3 and 4. Reductions of magnesium, zinc, lead, sodium adsorption ratio, sodium and electrical conductivity in soil samples at site 4 were 15.5%, 57%, 81.6%, 93.5%, 93.5% and 99% respectively. The percentage increases were 21.4% and 185% respectively, for calcium and iron ions. It can be concluded that the water quality index of the waste stabilisation ponds is unsuitable for discharge into the environment. However, the results revealed improved quality downstream of discharge point.