Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method...Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production.展开更多
This paper reviews the recent achievements made by our team in the mitigation of rockburst risk. It includes the development of neural network modeling on rockburst risk assessment for deep gold mines in South Af- ric...This paper reviews the recent achievements made by our team in the mitigation of rockburst risk. It includes the development of neural network modeling on rockburst risk assessment for deep gold mines in South Af- rica, an intelligent microseismicity monitoring system and sensors, an understanding of the rockburst evolution process using laboratory and in situ tests and monitoring, the establishment of a quantitative warning method for the location and intensities of different types of rockburst, and the development of measures for the dynamic control of rockburst. The mitigation of rockburst at the Hongtoushan copper mine is presented as an illustrative example.展开更多
文摘Firstly, the early warning index system of coal mine safety production was given from four aspects as per- sonnel, environment, equipment and management. Then, improvement measures which are additional momentum method, adaptive learning rate, particle swarm optimization algorithm, variable weight method and asynchronous learning factor, are used to optimize BP neural network models. Further, the models are applied to a comparative study on coal mine safety warning instance. Results show that the identification precision of MPSO-BP network model is higher than GBP and PSO-BP model, and MPSO- BP model can not only effectively reduce the possibility of the network falling into a local minimum point, but also has fast convergence and high precision, which will provide the scientific basis for the forewarnin~ management of coal mine safetv production.
基金The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (51621006, 413200104005, and 11232014).
文摘This paper reviews the recent achievements made by our team in the mitigation of rockburst risk. It includes the development of neural network modeling on rockburst risk assessment for deep gold mines in South Af- rica, an intelligent microseismicity monitoring system and sensors, an understanding of the rockburst evolution process using laboratory and in situ tests and monitoring, the establishment of a quantitative warning method for the location and intensities of different types of rockburst, and the development of measures for the dynamic control of rockburst. The mitigation of rockburst at the Hongtoushan copper mine is presented as an illustrative example.