To investigate the effect of post cryorolling treatments on simultaneous enhancement in strength and ductility of ultrafine grained material (UFG), AI 6061 alloy was subjected to cryorolling followed by warm rolling...To investigate the effect of post cryorolling treatments on simultaneous enhancement in strength and ductility of ultrafine grained material (UFG), AI 6061 alloy was subjected to cryorolling followed by warm rolling (CR + WR) and compared with cryorolling followed by short annealing (CR + SA) at the same temperature. Transmission electron microscopy (TEM) was used to characterize the microstructural features of the processed material. The mechanical properties were investigated through Vickers hardness testing and tensile testing at room temperature. TEM, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to investigate the precipitation evolution in UFG material. Results indicated that the alloy subjected to CR + WR has shown improved mechanical properties (114 HV, ultimate tensile strength (UTS): 350 MPa) as compared to that in the case of CR + SA (105 HV, UTS: 285 MPa). The size of the precipitates observed in CR + WR sample after peak ageing treatment is finer than that of peak aged CR + SA sample. The UTS of peak aged CR + WR sample (UTS: 390 MPa) was found to be higher than that of peak aged CR + SA sample (UTS: 355 MPa), without decrease in ductility.展开更多
Dislocation engineering concept has been successfully employed to tackle the strength-ductility trade-off in steels, resulting in the development of high-strength high-ductility deformed and partitioned(D&P)steel....Dislocation engineering concept has been successfully employed to tackle the strength-ductility trade-off in steels, resulting in the development of high-strength high-ductility deformed and partitioned(D&P)steel. The present perspective proposes to employ such dislocation engineering concept to develop strong and ductile magnesium(Mg) alloys. High density of < c + a > dislocations could be generated at appropriate temperature and retained in the Mg alloy after quenching to room temperature. Those < c + a > dislocations inherited from the warm deformation could provide < c + a > dislocation sources when the Mg alloy is deformed at room temperature, resulting in good ductility. The high dislocation density generated at warm deformation provides dislocation forest hardening, leading to improved yield strength of Mg alloy.展开更多
The influence of warm rolling processes on the microstructures and tensile properties of 100 Mn steel was studied.Strength appeared to increase with the rolling temperature but strengthening mechanisms varied.The incr...The influence of warm rolling processes on the microstructures and tensile properties of 100 Mn steel was studied.Strength appeared to increase with the rolling temperature but strengthening mechanisms varied.The increase of warm rolling temperature from 250℃ to 600℃ leads to enhanced recrystallization in martensite during the intercritical annealing(IA) at 620℃ for 5 h.As a result,both ultimate tensile strength(UTS) and total elongation(TE) increase.However,the size of relatively coarse recrystallized austenite grains and the resultant yield strength(YS) remain almost constant in this temperature range.The further increase of rolling temperature to 700-800℃ causes a considerable amount of pearlite to be formed during the IA,and then martensite is formed after the IA,resulting in dramatical increases in both YS and UTS but at the great loss of ductility.The warm rolling at 600℃ with 63% thickness reduction can produce the steel with the best mechanical combination of 1.2 GPa UTS and 35% TE,due to the formation of many ultrafine austenite grains and strain-induced cementite precipitates.This demonstrates that the mechanical combination of non-V-alloyed medium Mn steel can be improved to an equivalent level of 0.7% V alloyed 10 Mn steel just via the economic strain-induced cementite precipitation.展开更多
The steels with excellent strength and ductility are expected to be achieved by tailoring the microstructural features.In this work,laminate dual-phase(DP)steels with high martensite content(laminate HMDP steels)were ...The steels with excellent strength and ductility are expected to be achieved by tailoring the microstructural features.In this work,laminate dual-phase(DP)steels with high martensite content(laminate HMDP steels)were produced by a combination of warm rolling and intercritical annealing.Influence of rolling strain and annealing temperature on the microstructural evolution and mechanical properties of laminate HMDP steels were systematically studied.The strength of HMDP steels was significantly improved to~1.6 GPa associated with a high uniform elongation of 7%,as long as the laminate structure is maintained.The strengthening and ductilizing mechanisms of laminate HMDP steels are discussed based on the influence of laminate structure and the high martensite content,which promote the development of internal stresses and can be correlated to the Bauschinger effect as measured by the cyclic loadingunloading-reloading experiments.Detailed transmission electron microscopy(TEM)observation was applied to characterize the dislocation structure in the deformed ferrite.展开更多
In this report,the microstructure,mechanical properties,and textures of warm rolled interstitial-free steel annealed at four different temperatures(730,760,790,and 820°C)were studied.The overall structural featur...In this report,the microstructure,mechanical properties,and textures of warm rolled interstitial-free steel annealed at four different temperatures(730,760,790,and 820°C)were studied.The overall structural features of specimens were investigated by optical microscopy,and the textures were measured by X-ray diffraction(XRD).Nano-sized precipitates were then observed by a transmission electron microscope(TEM)on carbon extraction replicas.According to the results,with increased annealing temperatures,the ferrite grains grew;in addition,the sizes of Ti_4C_2S_2 and Ti C precipitates also increased.Additionally,the sizes of Ti N and Ti S precipitates slightly changed.When the annealing temperature increased from 730 to 820°C,the yield strength(YS)and the ultimate tensile strength(UTS)showed a decreasing trend.Meanwhile,elongation and the strain harden exponent(n value)increased to 49.6%and 0.34,respectively.By comparing textures annealed at different temperatures,the intensity of{111}texture annealed at 820°C was the largest,while the difference between the intensity of{111}<110>and{111}<112>was the smallest when the annealing temperature was 820°C.Therefore,the plastic strain ratio(r value)annealed at 820°C was the highest.展开更多
The effect of transition elements on grain refinement of 7475 aluminum alloy sheets produced by warm rolling was investigated. The alloy which contains zirconium instead of chromium showed ultra fine structures with s...The effect of transition elements on grain refinement of 7475 aluminum alloy sheets produced by warm rolling was investigated. The alloy which contains zirconium instead of chromium showed ultra fine structures with stable subgrains after warm rolling at 350 ℃, followed by solution heat treatment at 480 ℃. The average subgrain diameter was approximately 3 pan. It became clear that zirconium in solution has the effect of stabilizing subgrains due to precipitation of fine Al3Zr compounds during warm rolling. On the other hand, chromium-bearing compounds precipitate before warm rolling and they grow up to relatively large size during warm rolling. The warm rolled sheets with fine subgrains have unique properties compared with conventional 7475 aluminum alloy sheets produced by cold rolling. The warm roiled sheets solution heat treated had subgrain structures through the thickness with a high proportion of low-angle boundary less than 15°. The strength of the warm rolled sheets in T6 condition was about 10% higher than that of conventional 7475 aluminum alloy sheets. As the most remarkable point in the warm rolled sheets, the high Lankford (r) value of 3.5 was measured in the orientation of 45° to rolling direction, with the average r-value of 2.2. The high r-value would be derived from well developed r-fiber textures, especially with the strong {011 }(211) brass component. The warm rolled sheets also had high resistance to SCC. From Kikuchi lines analysis and TEM images, it was found that PFZs were hardly formed along the low- angle boundaries of the warm rolled sheets in T6 condition. This would be a factor to lead to the improvement of resistance to SCC because of reducing the difference in electrochemical property between the grain boundary area and the grain interior.展开更多
文摘To investigate the effect of post cryorolling treatments on simultaneous enhancement in strength and ductility of ultrafine grained material (UFG), AI 6061 alloy was subjected to cryorolling followed by warm rolling (CR + WR) and compared with cryorolling followed by short annealing (CR + SA) at the same temperature. Transmission electron microscopy (TEM) was used to characterize the microstructural features of the processed material. The mechanical properties were investigated through Vickers hardness testing and tensile testing at room temperature. TEM, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to investigate the precipitation evolution in UFG material. Results indicated that the alloy subjected to CR + WR has shown improved mechanical properties (114 HV, ultimate tensile strength (UTS): 350 MPa) as compared to that in the case of CR + SA (105 HV, UTS: 285 MPa). The size of the precipitates observed in CR + WR sample after peak ageing treatment is finer than that of peak aged CR + SA sample. The UTS of peak aged CR + WR sample (UTS: 390 MPa) was found to be higher than that of peak aged CR + SA sample (UTS: 355 MPa), without decrease in ductility.
文摘Dislocation engineering concept has been successfully employed to tackle the strength-ductility trade-off in steels, resulting in the development of high-strength high-ductility deformed and partitioned(D&P)steel. The present perspective proposes to employ such dislocation engineering concept to develop strong and ductile magnesium(Mg) alloys. High density of < c + a > dislocations could be generated at appropriate temperature and retained in the Mg alloy after quenching to room temperature. Those < c + a > dislocations inherited from the warm deformation could provide < c + a > dislocation sources when the Mg alloy is deformed at room temperature, resulting in good ductility. The high dislocation density generated at warm deformation provides dislocation forest hardening, leading to improved yield strength of Mg alloy.
基金the financial support from National Natural Science Foundation of China(Nos.51861135302 and51831002)the Young Elite Scientists Sponsorship Program by China Association of Science and Technology(No.2018QNRC001)+2 种基金the Fundamental Research Funds for the Central Universities(No.06102146)the Postdoctoral Science Foundation of China(No.2018M640063)the National Natural Science Foundation(No.51904028)。
文摘The influence of warm rolling processes on the microstructures and tensile properties of 100 Mn steel was studied.Strength appeared to increase with the rolling temperature but strengthening mechanisms varied.The increase of warm rolling temperature from 250℃ to 600℃ leads to enhanced recrystallization in martensite during the intercritical annealing(IA) at 620℃ for 5 h.As a result,both ultimate tensile strength(UTS) and total elongation(TE) increase.However,the size of relatively coarse recrystallized austenite grains and the resultant yield strength(YS) remain almost constant in this temperature range.The further increase of rolling temperature to 700-800℃ causes a considerable amount of pearlite to be formed during the IA,and then martensite is formed after the IA,resulting in dramatical increases in both YS and UTS but at the great loss of ductility.The warm rolling at 600℃ with 63% thickness reduction can produce the steel with the best mechanical combination of 1.2 GPa UTS and 35% TE,due to the formation of many ultrafine austenite grains and strain-induced cementite precipitates.This demonstrates that the mechanical combination of non-V-alloyed medium Mn steel can be improved to an equivalent level of 0.7% V alloyed 10 Mn steel just via the economic strain-induced cementite precipitation.
基金supported financially by the National Key R&D Program of China(No.2017YFA0204403)the National Natural Science Foundation of China(Nos.51931003,51601094,51601003,51701097 and 51901103)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.30917011106 and 30918011342)the Natural Science Foundation of Jiangsu Province(Nos.BK20170843and BK20180492)。
文摘The steels with excellent strength and ductility are expected to be achieved by tailoring the microstructural features.In this work,laminate dual-phase(DP)steels with high martensite content(laminate HMDP steels)were produced by a combination of warm rolling and intercritical annealing.Influence of rolling strain and annealing temperature on the microstructural evolution and mechanical properties of laminate HMDP steels were systematically studied.The strength of HMDP steels was significantly improved to~1.6 GPa associated with a high uniform elongation of 7%,as long as the laminate structure is maintained.The strengthening and ductilizing mechanisms of laminate HMDP steels are discussed based on the influence of laminate structure and the high martensite content,which promote the development of internal stresses and can be correlated to the Bauschinger effect as measured by the cyclic loadingunloading-reloading experiments.Detailed transmission electron microscopy(TEM)observation was applied to characterize the dislocation structure in the deformed ferrite.
文摘In this report,the microstructure,mechanical properties,and textures of warm rolled interstitial-free steel annealed at four different temperatures(730,760,790,and 820°C)were studied.The overall structural features of specimens were investigated by optical microscopy,and the textures were measured by X-ray diffraction(XRD).Nano-sized precipitates were then observed by a transmission electron microscope(TEM)on carbon extraction replicas.According to the results,with increased annealing temperatures,the ferrite grains grew;in addition,the sizes of Ti_4C_2S_2 and Ti C precipitates also increased.Additionally,the sizes of Ti N and Ti S precipitates slightly changed.When the annealing temperature increased from 730 to 820°C,the yield strength(YS)and the ultimate tensile strength(UTS)showed a decreasing trend.Meanwhile,elongation and the strain harden exponent(n value)increased to 49.6%and 0.34,respectively.By comparing textures annealed at different temperatures,the intensity of{111}texture annealed at 820°C was the largest,while the difference between the intensity of{111}<110>and{111}<112>was the smallest when the annealing temperature was 820°C.Therefore,the plastic strain ratio(r value)annealed at 820°C was the highest.
文摘The effect of transition elements on grain refinement of 7475 aluminum alloy sheets produced by warm rolling was investigated. The alloy which contains zirconium instead of chromium showed ultra fine structures with stable subgrains after warm rolling at 350 ℃, followed by solution heat treatment at 480 ℃. The average subgrain diameter was approximately 3 pan. It became clear that zirconium in solution has the effect of stabilizing subgrains due to precipitation of fine Al3Zr compounds during warm rolling. On the other hand, chromium-bearing compounds precipitate before warm rolling and they grow up to relatively large size during warm rolling. The warm rolled sheets with fine subgrains have unique properties compared with conventional 7475 aluminum alloy sheets produced by cold rolling. The warm roiled sheets solution heat treated had subgrain structures through the thickness with a high proportion of low-angle boundary less than 15°. The strength of the warm rolled sheets in T6 condition was about 10% higher than that of conventional 7475 aluminum alloy sheets. As the most remarkable point in the warm rolled sheets, the high Lankford (r) value of 3.5 was measured in the orientation of 45° to rolling direction, with the average r-value of 2.2. The high r-value would be derived from well developed r-fiber textures, especially with the strong {011 }(211) brass component. The warm rolled sheets also had high resistance to SCC. From Kikuchi lines analysis and TEM images, it was found that PFZs were hardly formed along the low- angle boundaries of the warm rolled sheets in T6 condition. This would be a factor to lead to the improvement of resistance to SCC because of reducing the difference in electrochemical property between the grain boundary area and the grain interior.