A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis com...A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis compared with experimental data has been made to assess the influence of the wall temperature and the leading edge nose radius on a hypersonic double wedge boundary layer. It has been found that the laminar boundary layer separation occurs on the first ramp. Furthermore, the wall temperature and the leading edge nose radius have remarkable influence on the separation characteristics in the kink. Comparison of the calculated pressure coefficient distribution and the boundary layer profile with the experimental data shows that better results can be achieved when using the modified transition model.展开更多
In order to develop a wall function boundary condition for high-speed flows so as to reduce the grid-dependence of the simula- tion for the skin friction and heat flux, a research was performed to improve the compress...In order to develop a wall function boundary condition for high-speed flows so as to reduce the grid-dependence of the simula- tion for the skin friction and heat flux, a research was performed to improve the compressible wall function boundary condition proposed by Nichols. Values of parameters in the velocity law-of-the-wall were revised according to numerical experiments and the expression of temperature law-of-the-wall was modified based on theoretical analysis and numerical simulation. Be- sides, the formula of the heat conduction term in near-wall region was derived so that the coupling between the wall function boundary condition and CFD code was realized more accurately. Whereafter, the application study of the modified wall func- tion was carried out. The numerical case of supersonic turbulent boundary layer on a flat plate illustrated that the modified wall function produces reasonable results of skin friction and heat flux, and profiles of velocity, temperature and turbulent eddy viscosity for coarse grids with the initial wall spacing of y+〈400, and that the modifications to the original wall function can obviously improve the simulation precision. As for the application of separation flows, it was found from the numerical cases of supersonic cavity flow and hypersonic axisymmetric compression comer that the compressible velocity law-of-the-wall originally established based on the fully-developed attached turbulent boundary layer approximately holds in the near-wall re- gion inside the separation flows, which ensures that reliable skin friction and heat flux can be given by the wall function inside the separation flows, while for the region near separation and reattachment points, the wall function gives results with a rela- tively large error, because the velocity law-of-the-wall used in the wall function takes on obvious deviation from the real ve- locity profiles near the separation and reattachment points.展开更多
Turbulent flows over rough surfaces widely exist in nature and industry.Investigating its mechanism is of theoretical and practical significance.In this work we simulate the turbulent channel flow with rough walls usi...Turbulent flows over rough surfaces widely exist in nature and industry.Investigating its mechanism is of theoretical and practical significance.In this work we simulate the turbulent channel flow with rough walls using large-eddy simulation with rough elements resolved using the curvilinear immersed boundary method and compare the results obtained in this work with those in the paper by Yuan and Piomelli(J.Fluid Mech.,vol.760,pp.R1,2014),where the volume of fluid method was employed for modeling rough elements.The mean streamwise velocity profiles predicted by the two methods agree well with each other.Differences in Reynolds stresses and dispersive stresses are observed,which are attributed to the different approaches in dealing with the complex geometry of the rough surface.展开更多
Large eddy simulation of turbulent channel flow with dense and small 3D roughness elements is carried out using a roughness element model Profiles of mean Reynolds stress, mean velocity and rms velocity as well as tur...Large eddy simulation of turbulent channel flow with dense and small 3D roughness elements is carried out using a roughness element model Profiles of mean Reynolds stress, mean velocity and rms velocity as well as turbulent structures near the wall are obtained. The shear stress in the rough wall is larger than that in the smooth wall side and the rough wall has a larger influence on the channel flow. Profiles of mean streamwise velocity near the wall have logarithmic velocity distributions for both smooth and roughness walls, while there is a velocity decrease for the rough wall due to larger fractional drag. All the three components of rms velocities in the rough wall region are larger than that in the smooth wall region, and the roughness elements on the wall increase turbulent intensity in all directions. The s^reak spacing and average diameter of near wall quasi-s^reamwise vortices increase with the presence of roughness elements on the wall and it is shown that the rough wall induces complex and strong streamwise vortices. Results of dense and small 3D roughness elements in both turbulent statistics and structure, obtained with a relatively simple method, are found to be comparable to related experiments.展开更多
文摘A new compressibility correlation is introduced in the Langtry's local variable-based transition model to investigate the phe- nomenon on double wedge shock/boundary layer interactions. The cmnputational analysis compared with experimental data has been made to assess the influence of the wall temperature and the leading edge nose radius on a hypersonic double wedge boundary layer. It has been found that the laminar boundary layer separation occurs on the first ramp. Furthermore, the wall temperature and the leading edge nose radius have remarkable influence on the separation characteristics in the kink. Comparison of the calculated pressure coefficient distribution and the boundary layer profile with the experimental data shows that better results can be achieved when using the modified transition model.
基金supported by the National Natural Science Foundation of China(Grant No.11202014)
文摘In order to develop a wall function boundary condition for high-speed flows so as to reduce the grid-dependence of the simula- tion for the skin friction and heat flux, a research was performed to improve the compressible wall function boundary condition proposed by Nichols. Values of parameters in the velocity law-of-the-wall were revised according to numerical experiments and the expression of temperature law-of-the-wall was modified based on theoretical analysis and numerical simulation. Be- sides, the formula of the heat conduction term in near-wall region was derived so that the coupling between the wall function boundary condition and CFD code was realized more accurately. Whereafter, the application study of the modified wall func- tion was carried out. The numerical case of supersonic turbulent boundary layer on a flat plate illustrated that the modified wall function produces reasonable results of skin friction and heat flux, and profiles of velocity, temperature and turbulent eddy viscosity for coarse grids with the initial wall spacing of y+〈400, and that the modifications to the original wall function can obviously improve the simulation precision. As for the application of separation flows, it was found from the numerical cases of supersonic cavity flow and hypersonic axisymmetric compression comer that the compressible velocity law-of-the-wall originally established based on the fully-developed attached turbulent boundary layer approximately holds in the near-wall re- gion inside the separation flows, which ensures that reliable skin friction and heat flux can be given by the wall function inside the separation flows, while for the region near separation and reattachment points, the wall function gives results with a rela- tively large error, because the velocity law-of-the-wall used in the wall function takes on obvious deviation from the real ve- locity profiles near the separation and reattachment points.
基金supported by the National Natural Science Foundation of China (NSFC) Basic Science Center Program for “Multiscale Problems in Nonlinear Mechanics” (Grant No. 11988102)the NSFC Program (Grant No. 11772337)+3 种基金the Science Challenge Program (Grant No. TZ2016001)the Strategic Priority Research Program,Chinese Academy of Sciences (CAS) (Grant No. XDB22040104)the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDJ-SSW-SYS002)the CAS Center for Excellence in Complex System Mechanics
文摘Turbulent flows over rough surfaces widely exist in nature and industry.Investigating its mechanism is of theoretical and practical significance.In this work we simulate the turbulent channel flow with rough walls using large-eddy simulation with rough elements resolved using the curvilinear immersed boundary method and compare the results obtained in this work with those in the paper by Yuan and Piomelli(J.Fluid Mech.,vol.760,pp.R1,2014),where the volume of fluid method was employed for modeling rough elements.The mean streamwise velocity profiles predicted by the two methods agree well with each other.Differences in Reynolds stresses and dispersive stresses are observed,which are attributed to the different approaches in dealing with the complex geometry of the rough surface.
基金Supported by the National Natural Science Foundation of China under Grant No 50576046, and the AMSS-PolyU Joint Research Institute for Engineering and Management Mathematics of The Hong Kong Polytechnic University under Grant No 1-BA05.
文摘Large eddy simulation of turbulent channel flow with dense and small 3D roughness elements is carried out using a roughness element model Profiles of mean Reynolds stress, mean velocity and rms velocity as well as turbulent structures near the wall are obtained. The shear stress in the rough wall is larger than that in the smooth wall side and the rough wall has a larger influence on the channel flow. Profiles of mean streamwise velocity near the wall have logarithmic velocity distributions for both smooth and roughness walls, while there is a velocity decrease for the rough wall due to larger fractional drag. All the three components of rms velocities in the rough wall region are larger than that in the smooth wall region, and the roughness elements on the wall increase turbulent intensity in all directions. The s^reak spacing and average diameter of near wall quasi-s^reamwise vortices increase with the presence of roughness elements on the wall and it is shown that the rough wall induces complex and strong streamwise vortices. Results of dense and small 3D roughness elements in both turbulent statistics and structure, obtained with a relatively simple method, are found to be comparable to related experiments.