Acetone is an important industrial raw material as well as biomarker in medical diagnosis.The detection of acetone has great significance for safety and health.However,high selectivity and low concentration(ppb level)...Acetone is an important industrial raw material as well as biomarker in medical diagnosis.The detection of acetone has great significance for safety and health.However,high selectivity and low concentration(ppb level)detection remain challenges for semiconductor gas sensor.Herein,we present a novel sensitive material with bimetallic PtCu nanocrystal modified on WO3·H2O hollow spheres(HS),which shows high sensitivity,excellent selectivity,fast response/recovery speed and low limit of detection(LOD)to acetone detection.Noteworthy,the response(Ra/Rg)of WO3·H2O HS sensor increased by 9.5 times after modification with 0.02%bimetallic PtCu nanocrystals.The response of PtCu/WO3·H2O HS to 50 ppm acetone is as high as 204.9 with short response/recovery times(3.4 s/7.5 s).Finally,the gassensitivity mechanism was discussed based on gas sensitivity test results.This research will offer a new route for high efficient acetone detection.展开更多
Tungsten trioxide inverse opal photonic crystals(WO_(3) IOPCs)not only possess the intrinsic properties of WO_(3)/but also own the unique characteristics of lOPCs structure.The evolution of preparation method of WO_(3...Tungsten trioxide inverse opal photonic crystals(WO_(3) IOPCs)not only possess the intrinsic properties of WO_(3)/but also own the unique characteristics of lOPCs structure.The evolution of preparation method of WO_(3) IOPCs has been briefly presented as electrodeposition method,sol-gel methodology and’dynamic hard-template’strategy in this review.Then the crystalline structure,optical property and electrical performance of WO_(3) IOPCs are later described.Afterwards,this review focuses on the wide application of WO_(3) lOPCs in chemical sensor,photo(electro)catalysis,electrochromic material and photochromic field in the last decade.Finally,a brief outlook over future investigation in preparation and modification,as well as promising application is proposed.This paper aims to encourage the attention and effort of researchers on WO_(3) IOPCs and other semiconductor materials with lOPCs structure.展开更多
Traditional triethylamine(TEA)sensors suffer from the drawback of serious cross-sensitivity due to the low charge-transfer ability of gas-sensing materials.Herein,an advanced anti-interference TEA sensor is designed b...Traditional triethylamine(TEA)sensors suffer from the drawback of serious cross-sensitivity due to the low charge-transfer ability of gas-sensing materials.Herein,an advanced anti-interference TEA sensor is designed by utilizing interfacial energy barriers of hierarchical Bi_(2)O_(3)/WO_(3) composite.Benefiting from abundant slit-like pores,desirable defect features,and amplification effect of heterojunctions,the sensor based on Bi_(2)O_(3)/WO_(3) composite with 40%Bi_(2)O_(3)(0.4-Bi_(2)O_(3)/WO_(3))demonstrates remarkable performance in terms of faster response/recovery time(1.7-fold/1.2-fold),higher response(2.1-fold),and lower power consumption(30℃-decrement)as compared with the pristine WO_(3) sensor.Furthermore,the composite sensor exhibits long-term stability,reproducibility,and negligible response towards interfering molecules,indicating the promising potential of Bi_(2)O_(3)/WO_(3) heterojunctions in anti-interference detection of low-concentration TEA in real applications.This work not only offers a rational solution to design advanced gas sensors by tuning the interfacial energy barriers of heterojunctions,but also provides a fundamental understanding of hierarchical Bi_(2)O_(3) structures in the gas-sensing field.展开更多
基金the financial supports from the National Natural Science Foundation of China(Nos.51702212,51802195,31701678,61671284)Science and Technology Commission of Shanghai Municipality(Nos.18511110600,19ZR1435200)+1 种基金Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-07-E00015)Program of Shanghai Academic Research Leader(No.19XD1422900)。
文摘Acetone is an important industrial raw material as well as biomarker in medical diagnosis.The detection of acetone has great significance for safety and health.However,high selectivity and low concentration(ppb level)detection remain challenges for semiconductor gas sensor.Herein,we present a novel sensitive material with bimetallic PtCu nanocrystal modified on WO3·H2O hollow spheres(HS),which shows high sensitivity,excellent selectivity,fast response/recovery speed and low limit of detection(LOD)to acetone detection.Noteworthy,the response(Ra/Rg)of WO3·H2O HS sensor increased by 9.5 times after modification with 0.02%bimetallic PtCu nanocrystals.The response of PtCu/WO3·H2O HS to 50 ppm acetone is as high as 204.9 with short response/recovery times(3.4 s/7.5 s).Finally,the gassensitivity mechanism was discussed based on gas sensitivity test results.This research will offer a new route for high efficient acetone detection.
基金the Fundamental Research Funds for the Central Universities(DUT20LAB102)Department of Education of Liaoning Province's Basic Research Projects of Liaoning Colleges and Universities(JQL201715403).
文摘Tungsten trioxide inverse opal photonic crystals(WO_(3) IOPCs)not only possess the intrinsic properties of WO_(3)/but also own the unique characteristics of lOPCs structure.The evolution of preparation method of WO_(3) IOPCs has been briefly presented as electrodeposition method,sol-gel methodology and’dynamic hard-template’strategy in this review.Then the crystalline structure,optical property and electrical performance of WO_(3) IOPCs are later described.Afterwards,this review focuses on the wide application of WO_(3) lOPCs in chemical sensor,photo(electro)catalysis,electrochromic material and photochromic field in the last decade.Finally,a brief outlook over future investigation in preparation and modification,as well as promising application is proposed.This paper aims to encourage the attention and effort of researchers on WO_(3) IOPCs and other semiconductor materials with lOPCs structure.
基金supported by the National Natural Science Foundation of China(No.51973099)Taishan Scholar Program of Shandong Province(No.tsqn201812055)+1 种基金Qingdao Science and Technology Plan Key Research and Development Special Project(No.21-1-2-17-xx)State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University)(Nos.ZKT04 and GZRC202007).
文摘Traditional triethylamine(TEA)sensors suffer from the drawback of serious cross-sensitivity due to the low charge-transfer ability of gas-sensing materials.Herein,an advanced anti-interference TEA sensor is designed by utilizing interfacial energy barriers of hierarchical Bi_(2)O_(3)/WO_(3) composite.Benefiting from abundant slit-like pores,desirable defect features,and amplification effect of heterojunctions,the sensor based on Bi_(2)O_(3)/WO_(3) composite with 40%Bi_(2)O_(3)(0.4-Bi_(2)O_(3)/WO_(3))demonstrates remarkable performance in terms of faster response/recovery time(1.7-fold/1.2-fold),higher response(2.1-fold),and lower power consumption(30℃-decrement)as compared with the pristine WO_(3) sensor.Furthermore,the composite sensor exhibits long-term stability,reproducibility,and negligible response towards interfering molecules,indicating the promising potential of Bi_(2)O_(3)/WO_(3) heterojunctions in anti-interference detection of low-concentration TEA in real applications.This work not only offers a rational solution to design advanced gas sensors by tuning the interfacial energy barriers of heterojunctions,but also provides a fundamental understanding of hierarchical Bi_(2)O_(3) structures in the gas-sensing field.