目前,基于RSSI(received signal strength indication)的指纹定位算法由于低成本、易实施的特性,逐渐成为室内定位技术的研究热点。然而,基于RSSI的WiFi指纹定位受到指纹点观测质量的影响,RSSI抖动较大时引起定位精度较低。考虑到GPR(Ga...目前,基于RSSI(received signal strength indication)的指纹定位算法由于低成本、易实施的特性,逐渐成为室内定位技术的研究热点。然而,基于RSSI的WiFi指纹定位受到指纹点观测质量的影响,RSSI抖动较大时引起定位精度较低。考虑到GPR(Gaussian process regression)模型能够有效地平滑时间序列信号,提出了基于GPR模型的WiFi指纹定位改进算法。实验结果表明,该算法能够有效提高定位精度,定位精度可达到1m,点位误差在小于1.5m限差时,其可靠度可达到83.3%。展开更多
受室内复杂环境的影响,实现满足各类室内定位需求、准确实时的定位仍有很大的挑战性。提出了一种联合WiFi信息和行人航位推算(pedestrian dead reckoning,PDR)算法的智能手机室内定位方法,并给出了其原理和流程。实验结果表明,该方法适...受室内复杂环境的影响,实现满足各类室内定位需求、准确实时的定位仍有很大的挑战性。提出了一种联合WiFi信息和行人航位推算(pedestrian dead reckoning,PDR)算法的智能手机室内定位方法,并给出了其原理和流程。实验结果表明,该方法适应性较强、定位结果准确。展开更多
文摘目前,基于RSSI(received signal strength indication)的指纹定位算法由于低成本、易实施的特性,逐渐成为室内定位技术的研究热点。然而,基于RSSI的WiFi指纹定位受到指纹点观测质量的影响,RSSI抖动较大时引起定位精度较低。考虑到GPR(Gaussian process regression)模型能够有效地平滑时间序列信号,提出了基于GPR模型的WiFi指纹定位改进算法。实验结果表明,该算法能够有效提高定位精度,定位精度可达到1m,点位误差在小于1.5m限差时,其可靠度可达到83.3%。