Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivale...Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.展开更多
以双馈风力发电系统(doubly-fed induction generator based wind energy conversion system,DFIG-based WECS)为例,利用小信号分析法推导出由风机、双质量块传动链构成的动力与传动系统通用传递函数方程。动力与传动系统传递函数的零...以双馈风力发电系统(doubly-fed induction generator based wind energy conversion system,DFIG-based WECS)为例,利用小信号分析法推导出由风机、双质量块传动链构成的动力与传动系统通用传递函数方程。动力与传动系统传递函数的零极点位置、稳定性与系统参数及系统运行工作点相关。该传递函数可进一步分解为扭转分量和非扭转分量。传动链参数仅对扭转分量造成影响。在此基础上,建立了考虑动力传动、电机、变流器、控制等环节的风力发电系统传递函数模型。模型综合了各环节参数,可直观反映系统参数对系统响应的影响,有助于深入了解系统动态行为。算例及时域仿真结果证明了所提出传递函数模型的准确性和高效性,可为系统参数设计研究提供理论依据。展开更多
The problematic of energy management, particularly in terms of resources control and efficiency, has become in the space of a few years an eminently strategic subject. Its implementation is both complex and exciting a...The problematic of energy management, particularly in terms of resources control and efficiency, has become in the space of a few years an eminently strategic subject. Its implementation is both complex and exciting as the prospects are promising, especially in relation with smart grids technologies. The deregulation of the electricity market, the high cost of storage, and the new laws on energy transition incite some significant users (collectivities, cities, regions, etc.) to form themselves into local producers in order to gain autonomy and reduce their energy bills. Thus, they may have their own sources (classic and/or renewable energy sources) to satisfy their needs and sell their excess production instead of storing it. In this idea, the territorial interconnection principle offers several advantages (energy efficiency, environmental protection, better economic balance). The main challenge of such systems is to ensure good energy management. Therefore, power distribution strategy must be implemented by matching the supply and the demand. Such systems have to be financially viable and environmentally sustainable. This allows among others to reduce the electricity bill and limit the systematic use of the national power network, typically using non-renewable sources, and thereby support sustainable development. This paper presents an original model for aid-decision in terms of grid configurations and control powers exchanged between interconnected territories. The model is based on Petri nets. Therefore, an iterative algorithm for power flow management is based on instantaneous gap between the production capability (photovoltaic, wind) and the demand of each user. So, in order to validate our model, we selected three French regions: the PACA region, the Champagne-Ardenne region and the Lorraine region. Due to their policy, their geographical and climatic features, we opted for two renewable sources: “wind” and “photovoltaic”. The numerical simulations are performed using the instantaneous productions o展开更多
The present paper deals with the modeling and control of Wind Energy Conversion System WECS based Doubly Fed Induction Generator DFIG using the slip energy recovery principle. The proposed drive system uses a Matrix C...The present paper deals with the modeling and control of Wind Energy Conversion System WECS based Doubly Fed Induction Generator DFIG using the slip energy recovery principle. The proposed drive system uses a Matrix Converter (MC) to transfer the slip energy of the rotor into the mains instead of using cascaded ac-dc-ac converter whilst the stator side is fixed to the grid. Operation at both sub-synchronous and super-synchronous regions is possible with the proposed drive system. The different level control strategies for maximum power point tracking and active-reactive power are discussed. Simulation results of the proposed doubly fed induction generator drive system show the good performance of the control system strategy for both transient and steadystate conditions.展开更多
This paper provides a systematic analysis of the large scale PMsG(permanent magnet synchronous generator)-based WECS(wind energy conversion system)torsional vibration problem under MPPT(maximum power point tracking)co...This paper provides a systematic analysis of the large scale PMsG(permanent magnet synchronous generator)-based WECS(wind energy conversion system)torsional vibration problem under MPPT(maximum power point tracking)control and constant power control.This is from the perspective of SSo(sub-synchronous oscillation),SSH(sub-syn-chronous harmonics)and forced torsional vibration.The cause of SsO is the negative total system damping,weak-ened by the constant power control.The system is susceptible to inducing SSH in the grid current and voltage in the under-damped condition.To effectively suppress the torsional vibration of PMSG-based WECS,a stiffness compensa-tion control strategy based on adaptive damping is proposed.The results show that SSo,SSH and the forced torsional vibration can be suppressed at the source using the proposed suppression strategy.展开更多
文摘Frequency regulation in a generation mix having large wind power penetration is a critical issue, as wind units isolate from the grid during disturbances with advanced power electronics controllers and reduce equivalent system inertia. Thus, it is important that wind turbines also contribute to system frequency control. This paper examines the dynamic contribution of doubly fed induction generator (DFIG)-based wind turbine in system frequency regulation. The modified inertial support scheme is proposed which helps the DFIG to provide the short term transient active power support to the grid during transients and arrests the fall in frequency. The frequency deviation is considered by the controller to provide the inertial control. An additional reference power output is used which helps the DFIG to release kinetic energy stored in rotating masses of the turbine. The optimal speed control parameters have been used for the DFIG to increases its participation in frequency control. The simulations carried out in a two-area interconnected power system demonstrate the contribution of the DFIG in load frequency control.
文摘以双馈风力发电系统(doubly-fed induction generator based wind energy conversion system,DFIG-based WECS)为例,利用小信号分析法推导出由风机、双质量块传动链构成的动力与传动系统通用传递函数方程。动力与传动系统传递函数的零极点位置、稳定性与系统参数及系统运行工作点相关。该传递函数可进一步分解为扭转分量和非扭转分量。传动链参数仅对扭转分量造成影响。在此基础上,建立了考虑动力传动、电机、变流器、控制等环节的风力发电系统传递函数模型。模型综合了各环节参数,可直观反映系统参数对系统响应的影响,有助于深入了解系统动态行为。算例及时域仿真结果证明了所提出传递函数模型的准确性和高效性,可为系统参数设计研究提供理论依据。
文摘The problematic of energy management, particularly in terms of resources control and efficiency, has become in the space of a few years an eminently strategic subject. Its implementation is both complex and exciting as the prospects are promising, especially in relation with smart grids technologies. The deregulation of the electricity market, the high cost of storage, and the new laws on energy transition incite some significant users (collectivities, cities, regions, etc.) to form themselves into local producers in order to gain autonomy and reduce their energy bills. Thus, they may have their own sources (classic and/or renewable energy sources) to satisfy their needs and sell their excess production instead of storing it. In this idea, the territorial interconnection principle offers several advantages (energy efficiency, environmental protection, better economic balance). The main challenge of such systems is to ensure good energy management. Therefore, power distribution strategy must be implemented by matching the supply and the demand. Such systems have to be financially viable and environmentally sustainable. This allows among others to reduce the electricity bill and limit the systematic use of the national power network, typically using non-renewable sources, and thereby support sustainable development. This paper presents an original model for aid-decision in terms of grid configurations and control powers exchanged between interconnected territories. The model is based on Petri nets. Therefore, an iterative algorithm for power flow management is based on instantaneous gap between the production capability (photovoltaic, wind) and the demand of each user. So, in order to validate our model, we selected three French regions: the PACA region, the Champagne-Ardenne region and the Lorraine region. Due to their policy, their geographical and climatic features, we opted for two renewable sources: “wind” and “photovoltaic”. The numerical simulations are performed using the instantaneous productions o
文摘The present paper deals with the modeling and control of Wind Energy Conversion System WECS based Doubly Fed Induction Generator DFIG using the slip energy recovery principle. The proposed drive system uses a Matrix Converter (MC) to transfer the slip energy of the rotor into the mains instead of using cascaded ac-dc-ac converter whilst the stator side is fixed to the grid. Operation at both sub-synchronous and super-synchronous regions is possible with the proposed drive system. The different level control strategies for maximum power point tracking and active-reactive power are discussed. Simulation results of the proposed doubly fed induction generator drive system show the good performance of the control system strategy for both transient and steadystate conditions.
基金supported by Shaanxi Provincial Department of Education Project (17JK0691)。
文摘This paper provides a systematic analysis of the large scale PMsG(permanent magnet synchronous generator)-based WECS(wind energy conversion system)torsional vibration problem under MPPT(maximum power point tracking)control and constant power control.This is from the perspective of SSo(sub-synchronous oscillation),SSH(sub-syn-chronous harmonics)and forced torsional vibration.The cause of SsO is the negative total system damping,weak-ened by the constant power control.The system is susceptible to inducing SSH in the grid current and voltage in the under-damped condition.To effectively suppress the torsional vibration of PMSG-based WECS,a stiffness compensa-tion control strategy based on adaptive damping is proposed.The results show that SSo,SSH and the forced torsional vibration can be suppressed at the source using the proposed suppression strategy.