针对210 t BOF-RH-CC工艺生产的无取向硅钢W800,采用氧氮分析仪、扫描电镜、图像分析、大样电解的手段,研究W800生产工艺过程中钢水洁净度的变化及钢中夹杂物数量、尺寸、类型的演变规律。研究表明:钢中w(T[O])总体上逐渐降低,w([N...针对210 t BOF-RH-CC工艺生产的无取向硅钢W800,采用氧氮分析仪、扫描电镜、图像分析、大样电解的手段,研究W800生产工艺过程中钢水洁净度的变化及钢中夹杂物数量、尺寸、类型的演变规律。研究表明:钢中w(T[O])总体上逐渐降低,w([N])逐渐增加;钢中夹杂物尺寸大部分集中在0~3μm,在冶炼过程中夹杂物的数量不断减少;RH精炼过程中钢中夹杂物为Al2O3和少量MgO-Al2O3夹杂;中间包中MgO-Al2O3夹杂数量增加,单独Al2O3夹杂减少;铸坯中的夹杂物主要为Al N、Al2O3和MnS,尺寸在10μm以下,没有发现单独的Al2O3,铸坯中大型夹杂物主要为脱氧产物、卷入的炉渣与炉衬反应形成的Al2O3-SiO2、CaO-Al2O3-SiO2、CaO-MgO-Al2O3复合夹杂。展开更多
Bacillus subtilis is a non-pathogenic Gram-positive bacterium that has been widely used to produce industrially and pharmaceutically relevant proteins. Trehalose, a non reducing disaccharide used as protective agent a...Bacillus subtilis is a non-pathogenic Gram-positive bacterium that has been widely used to produce industrially and pharmaceutically relevant proteins. Trehalose, a non reducing disaccharide used as protective agent and additive in foodstuffs and pharmaceutical products, can be prepared by trehalose synthase(TreS). The present work aims to construct a robust recombinant B. subtilis to achieve the secretory expression of TreS. In this study, the treS gene from Pseudomonas putida ATCC47054 was amplified by PCR and further cloned and expressed in B. subtilis WB800 N using pHT01 as expression vector. For avoiding the use of inducer, promoter P_(srfA) was used to replace the promoter P_(grac) in pHT01 and verify the activity of recombinant trehalose synthase. The TreS activity assay was employed to evaluate the performance of recombinant B. subtilis W800 N under different phosphate concentrations, carbon sources, carbon source concentrations, nitrogen sources and pH. The results showed that the P_(srfA) promoter had a good regulation effect under pH 8.0 condition, and the enzyme activity reached 6 000 U/L. Using the PhoD as the secretory signal peptide, TreS was effectively secreted, and the extracellular enzyme activity reached 2 100 U/L, accounting for 35% of the total enzyme activity. By optimizing the medium and fermentation conditions, the extracellular enzyme activity reached 6 900 U/L in 5 L of fermentor, and the proportion reached 48%. The pHT01-P_(srfA)-PhoD-treS secretory recombinant B. subtilis constructed in this study has great potential in trehalose synthase production.展开更多
文摘针对210 t BOF-RH-CC工艺生产的无取向硅钢W800,采用氧氮分析仪、扫描电镜、图像分析、大样电解的手段,研究W800生产工艺过程中钢水洁净度的变化及钢中夹杂物数量、尺寸、类型的演变规律。研究表明:钢中w(T[O])总体上逐渐降低,w([N])逐渐增加;钢中夹杂物尺寸大部分集中在0~3μm,在冶炼过程中夹杂物的数量不断减少;RH精炼过程中钢中夹杂物为Al2O3和少量MgO-Al2O3夹杂;中间包中MgO-Al2O3夹杂数量增加,单独Al2O3夹杂减少;铸坯中的夹杂物主要为Al N、Al2O3和MnS,尺寸在10μm以下,没有发现单独的Al2O3,铸坯中大型夹杂物主要为脱氧产物、卷入的炉渣与炉衬反应形成的Al2O3-SiO2、CaO-Al2O3-SiO2、CaO-MgO-Al2O3复合夹杂。
基金Supported by the National Nature Science Foundation of China(No.31501413)Shandong key project of Research&Development plan(No.2017GSF221019)+1 种基金Young doctorate Cooperation Fund Project,Qi Lu University of Technology(Shandong Academy of Sciences)(No.2017BSHZ021)Shandong Natural Science Foundation Project(ZR2017BC072)
文摘Bacillus subtilis is a non-pathogenic Gram-positive bacterium that has been widely used to produce industrially and pharmaceutically relevant proteins. Trehalose, a non reducing disaccharide used as protective agent and additive in foodstuffs and pharmaceutical products, can be prepared by trehalose synthase(TreS). The present work aims to construct a robust recombinant B. subtilis to achieve the secretory expression of TreS. In this study, the treS gene from Pseudomonas putida ATCC47054 was amplified by PCR and further cloned and expressed in B. subtilis WB800 N using pHT01 as expression vector. For avoiding the use of inducer, promoter P_(srfA) was used to replace the promoter P_(grac) in pHT01 and verify the activity of recombinant trehalose synthase. The TreS activity assay was employed to evaluate the performance of recombinant B. subtilis W800 N under different phosphate concentrations, carbon sources, carbon source concentrations, nitrogen sources and pH. The results showed that the P_(srfA) promoter had a good regulation effect under pH 8.0 condition, and the enzyme activity reached 6 000 U/L. Using the PhoD as the secretory signal peptide, TreS was effectively secreted, and the extracellular enzyme activity reached 2 100 U/L, accounting for 35% of the total enzyme activity. By optimizing the medium and fermentation conditions, the extracellular enzyme activity reached 6 900 U/L in 5 L of fermentor, and the proportion reached 48%. The pHT01-P_(srfA)-PhoD-treS secretory recombinant B. subtilis constructed in this study has great potential in trehalose synthase production.