Experimental folding fin models with an adjustable free-play are tested in a wind tunnel.The fin structure is modeled using the free-interface component mode synthesis method,and its free-play is modeled as four indep...Experimental folding fin models with an adjustable free-play are tested in a wind tunnel.The fin structure is modeled using the free-interface component mode synthesis method,and its free-play is modeled as four independent nonlinear springs with asymmetric stiffness.A nonplanar unsteady vortex-lattice method considering compressibility is employed to address nonlinear deformation and high subsonic flow.Surface spline interpolation is improved through projection and partition.The aeroelastic characteristics of folding fins with different free-play magnitudes,initial conditions and elastic-axis positions are analyzed using an established time-marching method because of its relatively small computation scale and high precision.The results show good consistency among the presented method,the wind tunnel test and the harmonic balance method.There is a negative correlation between the critical speed of divergent motion and the ratio of the initial condition to the free-play magnitude.If either the free-play magnitude or the initial condition is extreme(tiny or vast),the system nonlinearity degenerates to linearity.Generally,the flutter prevention design of a linear model can be applied to a nonlinear model,such as moving the elastic-axis position aftward.The presented fin configuration exhibits an unstable limit cycle oscillation because the orders of coupled flutter modes do not change with variations in equivalent linear stiffness.展开更多
This paper presents the application of an artificial neural network to develop an approach to determine and study the energy-optimal wing kinematics of a hovering bionic hawkmoth model.A three-layered artificial neura...This paper presents the application of an artificial neural network to develop an approach to determine and study the energy-optimal wing kinematics of a hovering bionic hawkmoth model.A three-layered artificial neural network is used for the rapid prediction of the unsteady aerodynamic force acting on the wings and the required power.When this artificial network is integrated into genetic and simplex algorithms,the running time of the optimization process is reduced considerably.The validity of this new approach is confirmed in a comparison with a conventional method using an aerodynamic model based on an extended unsteady vortex-lattice method for a sinu soidal wing kinematics problem.When studying the obtained results,it is found that actual hawkmoths do not hover under an energy-optimal condition.Instead,by tilting the stroke plane and lowering the wing positions,they can compromise and expend some energy to enhance their maneuverability and the stability of their flight.展开更多
We present an overview of our recent theoretical studies on the quantum phenomena of the spin-1 Bose Einstein condensates, including the phase diagram, soliton solutions and the formation of the topological spin textu...We present an overview of our recent theoretical studies on the quantum phenomena of the spin-1 Bose Einstein condensates, including the phase diagram, soliton solutions and the formation of the topological spin textures. A brief exploration of the effects of spin-orbit coupling on the ground-state properties is given. We put forward proposals by using the transmission spectra of an optical cavity to probe the quantum ground states: the ferromagnetic and polar phases. Quasi-one-dimension solitons and ring dark solitons are studied. It is predicted that characteristics of the magnetic solitons in optical lattice can be tuned by controlling the long-range light-induced and static magnetic dipole- dipole interactions; solutions of single-component magnetic and single-, two-, three-components polar solitons are found; ring dark solitons in spin-1 condensates are predicted to live longer lifetimes than that in their scalar counterparts. In the formation of spin textures, we have considered the theoretical model of a rapidly quenched and fast rotating trapped spin-1 Bose Einstein condensate, whose dynamics can be studied by solving the stochastic projected Gross-Pitaevskii equations. Spontaneous generation of nontrivial topological defects, such as the hexagonal lattice skyrmions and square lattice of half-quantized vortices was predicted. In particular, crystallization of merons (half skyrmions) can be generated in the presence of spin-orbit coupling.展开更多
The standard Ginzburg-Landau (GL) equations are only valid in the vicinity of the critical temperature. Based on the Eilenberger equations for a single band and s-wave superconductor, we derive a modified version of t...The standard Ginzburg-Landau (GL) equations are only valid in the vicinity of the critical temperature. Based on the Eilenberger equations for a single band and s-wave superconductor, we derive a modified version of the standard GL equations to improve the applicability of the standard formalism at temperature away from the critical temperature. It is shown that in comparison with previous studies, our method is more convenient to calculate and our modified equations are also compatible with a dirty superconductor. To illustrate the usefulness of our formalism, we solve the modified equations numerically and give the magnetic field distribution in the mixed state at any temperature. The results show that the vortex lattice could be still observed even away from the critical temperature (e.g., T/Tc = 0.3).展开更多
基金This study was supported by the National Natural Science Foundation of China(No.12102027).
文摘Experimental folding fin models with an adjustable free-play are tested in a wind tunnel.The fin structure is modeled using the free-interface component mode synthesis method,and its free-play is modeled as four independent nonlinear springs with asymmetric stiffness.A nonplanar unsteady vortex-lattice method considering compressibility is employed to address nonlinear deformation and high subsonic flow.Surface spline interpolation is improved through projection and partition.The aeroelastic characteristics of folding fins with different free-play magnitudes,initial conditions and elastic-axis positions are analyzed using an established time-marching method because of its relatively small computation scale and high precision.The results show good consistency among the presented method,the wind tunnel test and the harmonic balance method.There is a negative correlation between the critical speed of divergent motion and the ratio of the initial condition to the free-play magnitude.If either the free-play magnitude or the initial condition is extreme(tiny or vast),the system nonlinearity degenerates to linearity.Generally,the flutter prevention design of a linear model can be applied to a nonlinear model,such as moving the elastic-axis position aftward.The presented fin configuration exhibits an unstable limit cycle oscillation because the orders of coupled flutter modes do not change with variations in equivalent linear stiffness.
文摘This paper presents the application of an artificial neural network to develop an approach to determine and study the energy-optimal wing kinematics of a hovering bionic hawkmoth model.A three-layered artificial neural network is used for the rapid prediction of the unsteady aerodynamic force acting on the wings and the required power.When this artificial network is integrated into genetic and simplex algorithms,the running time of the optimization process is reduced considerably.The validity of this new approach is confirmed in a comparison with a conventional method using an aerodynamic model based on an extended unsteady vortex-lattice method for a sinu soidal wing kinematics problem.When studying the obtained results,it is found that actual hawkmoths do not hover under an energy-optimal condition.Instead,by tilting the stroke plane and lowering the wing positions,they can compromise and expend some energy to enhance their maneuverability and the stability of their flight.
文摘We present an overview of our recent theoretical studies on the quantum phenomena of the spin-1 Bose Einstein condensates, including the phase diagram, soliton solutions and the formation of the topological spin textures. A brief exploration of the effects of spin-orbit coupling on the ground-state properties is given. We put forward proposals by using the transmission spectra of an optical cavity to probe the quantum ground states: the ferromagnetic and polar phases. Quasi-one-dimension solitons and ring dark solitons are studied. It is predicted that characteristics of the magnetic solitons in optical lattice can be tuned by controlling the long-range light-induced and static magnetic dipole- dipole interactions; solutions of single-component magnetic and single-, two-, three-components polar solitons are found; ring dark solitons in spin-1 condensates are predicted to live longer lifetimes than that in their scalar counterparts. In the formation of spin textures, we have considered the theoretical model of a rapidly quenched and fast rotating trapped spin-1 Bose Einstein condensate, whose dynamics can be studied by solving the stochastic projected Gross-Pitaevskii equations. Spontaneous generation of nontrivial topological defects, such as the hexagonal lattice skyrmions and square lattice of half-quantized vortices was predicted. In particular, crystallization of merons (half skyrmions) can be generated in the presence of spin-orbit coupling.
基金supported by National Key R&D Program of China(Grant No.2022YFA1403201)National Natural Science Foundation of China(Grant No.12274205 and No.11874205).
文摘The standard Ginzburg-Landau (GL) equations are only valid in the vicinity of the critical temperature. Based on the Eilenberger equations for a single band and s-wave superconductor, we derive a modified version of the standard GL equations to improve the applicability of the standard formalism at temperature away from the critical temperature. It is shown that in comparison with previous studies, our method is more convenient to calculate and our modified equations are also compatible with a dirty superconductor. To illustrate the usefulness of our formalism, we solve the modified equations numerically and give the magnetic field distribution in the mixed state at any temperature. The results show that the vortex lattice could be still observed even away from the critical temperature (e.g., T/Tc = 0.3).