This work builds on an earlier work done which used global coordinates where a large number of elements were needed to form a convergence of results for shop built spherical pressure vessels. In this work area coordin...This work builds on an earlier work done which used global coordinates where a large number of elements were needed to form a convergence of results for shop built spherical pressure vessels. In this work area coordinates were used. Any action that leads to an inability on the part of a structure to function as intended is known as failure. This research, therefore, investigates stresses developed in a shop built carbon steel spherical storage vessels using finite element approach as the analytical tool. 3-D finite element modeling using 3-node shallow triangular element with five degrees of freedom at each node is employed. These five degrees of freedom are the essential nodal degrees of freedom without the sixth in-plane rotation. The resulting equations from finite element analysis are coded using FORTRAN 90 computer programme. Spherical storage vessels are subjected to various internal loading pressures while nodal displacements, strains and the corresponding maximum Von-mises stresses are determined. The calculated maximum Vonmises stresses are compared with the yield strength of the shell plate material. Using specified safety factor, safety internal pressures with the corresponding shell thicknesses for shop built spherical pressure vessels are determined. The finite element modeling carried out in this research can be used to predict in-service stresses, strains, and deformations of shop built spherical pressure vessels using Von-mises yield stress as the failure criteria. The results obtained were validated by analytical method and it showed there was no significant difference (P > 0.05) with values obtained through analytical method.展开更多
In a strip winding process,the sleeve is a hollow cylinder that is mounted between a strip coil and a mandrel to maintain uniform coil shape when the strip coil is very thin,but its deformation behavior has not been i...In a strip winding process,the sleeve is a hollow cylinder that is mounted between a strip coil and a mandrel to maintain uniform coil shape when the strip coil is very thin,but its deformation behavior has not been investigated before.Thus,a finite element(FE)model was presented to calculate the stress distribution in a sleeve and strip coil when 1-3mm-thick stainless steel was wound around the sleeve.The FE model was developed by extending aprevious model by adding a sleeve between the mandrel and strip,and by modifying the boundary and interaction conditions.The strip winding process was divided into an initial process and a steady-state process.During the initial process,the minimum and maximum pressure required on the belt wrapper to maintain coil shape by self-friction of the strip was calculated by the FE model when the belt wrapper is ejected at the end of the initial process.After the initial process,an analytical model of the steady-state process was established to calculate the stress distribution and was compared with the FE model to validate it.The suggested analytical model took 11 sto give the same stress distribution that the FE model took 30 dto produce.展开更多
文摘This work builds on an earlier work done which used global coordinates where a large number of elements were needed to form a convergence of results for shop built spherical pressure vessels. In this work area coordinates were used. Any action that leads to an inability on the part of a structure to function as intended is known as failure. This research, therefore, investigates stresses developed in a shop built carbon steel spherical storage vessels using finite element approach as the analytical tool. 3-D finite element modeling using 3-node shallow triangular element with five degrees of freedom at each node is employed. These five degrees of freedom are the essential nodal degrees of freedom without the sixth in-plane rotation. The resulting equations from finite element analysis are coded using FORTRAN 90 computer programme. Spherical storage vessels are subjected to various internal loading pressures while nodal displacements, strains and the corresponding maximum Von-mises stresses are determined. The calculated maximum Vonmises stresses are compared with the yield strength of the shell plate material. Using specified safety factor, safety internal pressures with the corresponding shell thicknesses for shop built spherical pressure vessels are determined. The finite element modeling carried out in this research can be used to predict in-service stresses, strains, and deformations of shop built spherical pressure vessels using Von-mises yield stress as the failure criteria. The results obtained were validated by analytical method and it showed there was no significant difference (P > 0.05) with values obtained through analytical method.
基金supported by the POSCO Research Project(2015Y011)from POSCO Engineering Solution Centerthe Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government Ministry of Trade Industry and Energy(MOTIE).(2015 Establishment of GEM,No.H2001-13-1001)
文摘In a strip winding process,the sleeve is a hollow cylinder that is mounted between a strip coil and a mandrel to maintain uniform coil shape when the strip coil is very thin,but its deformation behavior has not been investigated before.Thus,a finite element(FE)model was presented to calculate the stress distribution in a sleeve and strip coil when 1-3mm-thick stainless steel was wound around the sleeve.The FE model was developed by extending aprevious model by adding a sleeve between the mandrel and strip,and by modifying the boundary and interaction conditions.The strip winding process was divided into an initial process and a steady-state process.During the initial process,the minimum and maximum pressure required on the belt wrapper to maintain coil shape by self-friction of the strip was calculated by the FE model when the belt wrapper is ejected at the end of the initial process.After the initial process,an analytical model of the steady-state process was established to calculate the stress distribution and was compared with the FE model to validate it.The suggested analytical model took 11 sto give the same stress distribution that the FE model took 30 dto produce.