Over the last few years, there has been a significant increase in attention paid to fractional differential equations, given their wide array of applications in the fields of physics and engineering. The recent develo...Over the last few years, there has been a significant increase in attention paid to fractional differential equations, given their wide array of applications in the fields of physics and engineering. The recent development of using fractional telegraph equations as models in some fields (e.g., the thermal diffusion in fractal media) has heightened the importance of examining the method of solutions for such equations (both approximate and analytic). The present work is designed to serve as a valuable contribution to work in this field. The key objective of this work is to propose a general framework that can be used to guide quadratic spline functions in order to create a numerical method for obtaining an approximation solution using the linear space-fractional telegraph equation. Additionally, the Von Neumann method was employed to measure the stability of the analytical scheme, which showed that the proposed method is conditionally stable. What’s more, the proposal contains a numerical example that illustrates how the proposed method can be implemented practically, whilst the error estimates and numerical stability results are discussed in depth. The findings indicate that the proposed model is highly effective, convenient and accurate for solving the relevant problems and is suitable for use with approximate solutions acquired through the two-dimensional differential transform method that has been developed for linear partial differential equations with space- and time-fractional derivatives.展开更多
In previous decades, many of the practical problems arising in scientific fields such as physics, engineering, and mathematics have been related to nonlinear fractional partial differential equations. One of these non...In previous decades, many of the practical problems arising in scientific fields such as physics, engineering, and mathematics have been related to nonlinear fractional partial differential equations. One of these nonlinear partial differential equations, the dissipative wave equation, has been found to have a plethora of useful applications in different fields. A special class of solutions has been studied for the dissipative wave equation including exact solutions and approximate solutions. The aim of this article is to compare the non-polynomial spline method and the cubic B-spline method with the solution of a nonlinear dissipative wave equation. We will conduct a comparison of the stability of the two methods using the Von Neumann stability analysis. In addition, a numerical example will be presented to illustrate the accuracy of these methods.展开更多
In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to inv...In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to investigate isomorphisms between C*-algebras, Lie C*-algebras and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras and JC*-algebras, associated with the Cauchy-Jensen functional equation 2f (x + y/2 + z + w) = f(x) + f(y) + 2f(z) + 2f(w).展开更多
When analysing the thermal conductivity of magnetic fluids, the traditional Sharma-Tasso-Olver (STO) equation is crucial. The Sharma-Tasso-Olive equation’s approximate solution is the primary goal of this work. The q...When analysing the thermal conductivity of magnetic fluids, the traditional Sharma-Tasso-Olver (STO) equation is crucial. The Sharma-Tasso-Olive equation’s approximate solution is the primary goal of this work. The quintic B-spline collocation method is used for solving such nonlinear partial differential equations. The developed plan uses the collocation approach and finite difference method to solve the problem under consideration. The given problem is discretized in both time and space directions. Forward difference formula is used for temporal discretization. Collocation method is used for spatial discretization. Additionally, by using Von Neumann stability analysis, it is demonstrated that the devised scheme is stable and convergent with regard to time. Examining two analytical approaches to show the effectiveness and performance of our approximate solution.展开更多
The efficiency of solving computationally partial differential equations can be profoundly highlighted by the creation of precise,higher-order compact numerical scheme that results in truly outstanding accuracy at a g...The efficiency of solving computationally partial differential equations can be profoundly highlighted by the creation of precise,higher-order compact numerical scheme that results in truly outstanding accuracy at a given cost.The objective of this article is to develop a highly accurate novel algorithm for two dimensional non-linear Burgers Huxley(BH)equations.The proposed compact numerical scheme is found to be free of superiors approximate oscillations across discontinuities,and in a smooth ow region,it efciently obtained a high-order accuracy.In particular,two classes of higherorder compact nite difference schemes are taken into account and compared based on their computational economy.The stability and accuracy show that the schemes are unconditionally stable and accurate up to a two-order in time and to six-order in space.Moreover,algorithms and data tables illustrate the scheme efciency and decisiveness for solving such non-linear coupled system.Efciency is scaled in terms of L_(2) and L_(∞) norms,which validate the approximated results with the corresponding analytical solution.The investigation of the stability requirements of the implicit method applied in the algorithm was carried out.Reasonable agreement was constructed under indistinguishable computational conditions.The proposed methods can be implemented for real-world problems,originating in engineering and science.展开更多
文摘Over the last few years, there has been a significant increase in attention paid to fractional differential equations, given their wide array of applications in the fields of physics and engineering. The recent development of using fractional telegraph equations as models in some fields (e.g., the thermal diffusion in fractal media) has heightened the importance of examining the method of solutions for such equations (both approximate and analytic). The present work is designed to serve as a valuable contribution to work in this field. The key objective of this work is to propose a general framework that can be used to guide quadratic spline functions in order to create a numerical method for obtaining an approximation solution using the linear space-fractional telegraph equation. Additionally, the Von Neumann method was employed to measure the stability of the analytical scheme, which showed that the proposed method is conditionally stable. What’s more, the proposal contains a numerical example that illustrates how the proposed method can be implemented practically, whilst the error estimates and numerical stability results are discussed in depth. The findings indicate that the proposed model is highly effective, convenient and accurate for solving the relevant problems and is suitable for use with approximate solutions acquired through the two-dimensional differential transform method that has been developed for linear partial differential equations with space- and time-fractional derivatives.
文摘In previous decades, many of the practical problems arising in scientific fields such as physics, engineering, and mathematics have been related to nonlinear fractional partial differential equations. One of these nonlinear partial differential equations, the dissipative wave equation, has been found to have a plethora of useful applications in different fields. A special class of solutions has been studied for the dissipative wave equation including exact solutions and approximate solutions. The aim of this article is to compare the non-polynomial spline method and the cubic B-spline method with the solution of a nonlinear dissipative wave equation. We will conduct a comparison of the stability of the two methods using the Von Neumann stability analysis. In addition, a numerical example will be presented to illustrate the accuracy of these methods.
基金supported by the Daejin University grants in 2010
文摘In this article, we prove the Hyers-Ulam-Rassias stability of the following Cauchy-Jensen functional inequality:‖f (x) + f (y) + 2f (z) + 2f (w)‖ ≤‖ 2f x + y2 + z + w ‖(0.1)This is applied to investigate isomorphisms between C*-algebras, Lie C*-algebras and JC*-algebras, and derivations on C*-algebras, Lie C*-algebras and JC*-algebras, associated with the Cauchy-Jensen functional equation 2f (x + y/2 + z + w) = f(x) + f(y) + 2f(z) + 2f(w).
文摘When analysing the thermal conductivity of magnetic fluids, the traditional Sharma-Tasso-Olver (STO) equation is crucial. The Sharma-Tasso-Olive equation’s approximate solution is the primary goal of this work. The quintic B-spline collocation method is used for solving such nonlinear partial differential equations. The developed plan uses the collocation approach and finite difference method to solve the problem under consideration. The given problem is discretized in both time and space directions. Forward difference formula is used for temporal discretization. Collocation method is used for spatial discretization. Additionally, by using Von Neumann stability analysis, it is demonstrated that the devised scheme is stable and convergent with regard to time. Examining two analytical approaches to show the effectiveness and performance of our approximate solution.
文摘The efficiency of solving computationally partial differential equations can be profoundly highlighted by the creation of precise,higher-order compact numerical scheme that results in truly outstanding accuracy at a given cost.The objective of this article is to develop a highly accurate novel algorithm for two dimensional non-linear Burgers Huxley(BH)equations.The proposed compact numerical scheme is found to be free of superiors approximate oscillations across discontinuities,and in a smooth ow region,it efciently obtained a high-order accuracy.In particular,two classes of higherorder compact nite difference schemes are taken into account and compared based on their computational economy.The stability and accuracy show that the schemes are unconditionally stable and accurate up to a two-order in time and to six-order in space.Moreover,algorithms and data tables illustrate the scheme efciency and decisiveness for solving such non-linear coupled system.Efciency is scaled in terms of L_(2) and L_(∞) norms,which validate the approximated results with the corresponding analytical solution.The investigation of the stability requirements of the implicit method applied in the algorithm was carried out.Reasonable agreement was constructed under indistinguishable computational conditions.The proposed methods can be implemented for real-world problems,originating in engineering and science.