Based on the Boltzmann's superposition principles of linear viscoelastic materials and the von Karman's hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of visco...Based on the Boltzmann's superposition principles of linear viscoelastic materials and the von Karman's hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of viscoelastic thin plates was given. By the Galerkin method in spatial domain, the original integro-partial-differential system could be transformed into an integral system. The latter further was reduced to a differential system by using the new method for temporal domain presented in this paper. Numerical results show that compared with the ordinary finite difference method, the new method in this paper is simpler to operate and has some advantages, such as, no storage and quicker computational speed etc.展开更多
We consider a von Karman equation of memory type with a delay term . By introducing suitable energy and Lyapunov functional, we establish a general decay estimate for the energy, which depends on the behavior of g.
文摘Based on the Boltzmann's superposition principles of linear viscoelastic materials and the von Karman's hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of viscoelastic thin plates was given. By the Galerkin method in spatial domain, the original integro-partial-differential system could be transformed into an integral system. The latter further was reduced to a differential system by using the new method for temporal domain presented in this paper. Numerical results show that compared with the ordinary finite difference method, the new method in this paper is simpler to operate and has some advantages, such as, no storage and quicker computational speed etc.
文摘We consider a von Karman equation of memory type with a delay term . By introducing suitable energy and Lyapunov functional, we establish a general decay estimate for the energy, which depends on the behavior of g.