Physical activity engagement results in a variety of positive health outcomes,including a reduction in cardiovascular disease risk partially due to eccentric remodeling of the heart.The purpose of this investigation w...Physical activity engagement results in a variety of positive health outcomes,including a reduction in cardiovascular disease risk partially due to eccentric remodeling of the heart.The purpose of this investigation was to determine if four replicate lines of High Runner mice that have been selectively bred for voluntary exercise on wheels have a cardiac phenotype that resembles the outcome of eccentric remodeling.Adult females(average age 55 days)from the 4 High Runner and 4 non-selected control lines were anaesthetized via vaporized isoflurane,then echocardiographic images were collected and analyzed for structural and functional differences.High Runner mice in general had lower ejection fractions compared to control mice lines(2-tailed p=0.0236)and tended to have thicker walls of the anterior portion of the left ventricle(p=0.065).However,a subset of the High Runner individuals,termed mini-muscle mice,had greater ejection fraction(p=0.0006),fractional shortening percentage(p<0.0001),and ventricular mass at dissection(p<0.0027 with body mass as a covariate)compared to non-mini muscle mice.Mice from replicate lines bred for high voluntary exercise did not all have inherent positive cardiac functional or structural characteristics,although a genetically unique subset of mini-muscle individuals did have greater functional cardiac characteristics,which in conjunction with their previously described peripheral aerobic enhancements(e.g.,increased capillarity)would partially account for their increased VO2max.展开更多
目的探究踝关节跖背屈疲劳任务中高精度经颅直流电刺激(high-definition transcranial direct current stimulation,HD-tDCS)对H-反射和M-波的调控效果,为HD-tDCS减轻神经肌肉疲劳的实际应用提供方向。方法招募20名健康青年男性受试者,...目的探究踝关节跖背屈疲劳任务中高精度经颅直流电刺激(high-definition transcranial direct current stimulation,HD-tDCS)对H-反射和M-波的调控效果,为HD-tDCS减轻神经肌肉疲劳的实际应用提供方向。方法招募20名健康青年男性受试者,随机分为真刺激组和假刺激组各10名。对受试者采取连续5 d的单盲HD-tDCS干预(时间20 min;强度2 mA;靶点Cz),干预前1天采集受试者安静条件下的H-反射和M-波,跖屈肌最大自主收缩(maximal voluntary isometric contraction,MVIC)时的M-波,跖屈肌和背屈肌MVIC力矩,并进行一次踝关节跖背屈运动性疲劳任务,以确定受试者达到该任务疲劳的时间。干预后1天进行与第1次疲劳任务相同的运动时间,并进行后测的数据采集。采用重复测量双因素(刺激方案×疲劳前后)方差分析其自变量对受试者肌肉力学特性、α运动神经元传导特性各指标的影响。结果相较于疲劳前,两组疲劳后的自主激活值(voluntary activation,VA)、H-反射最大值(maximal H-reflex,H_(max))、M-波最大值(maximal M-wave,Mmax)、跖屈肌和背屈肌MVIC力矩均显著降低(P<0.05),但相比于真刺激组,假刺激组的VA和背屈肌MVIC力矩下降更为显著(P<0.05)。结论连续5 d的HD-tDCS干预有助于提高脊髓节段α运动神经元的活性,且能抑制跖背屈疲劳诱发的外周“神经-肌肉”接头处信息传递能力的下降。展开更多
基金The study was funded by the Department of Kinesiology at Michigan State University and NSF grant IOS-2038528 to T.G.and Natalie Holt.
文摘Physical activity engagement results in a variety of positive health outcomes,including a reduction in cardiovascular disease risk partially due to eccentric remodeling of the heart.The purpose of this investigation was to determine if four replicate lines of High Runner mice that have been selectively bred for voluntary exercise on wheels have a cardiac phenotype that resembles the outcome of eccentric remodeling.Adult females(average age 55 days)from the 4 High Runner and 4 non-selected control lines were anaesthetized via vaporized isoflurane,then echocardiographic images were collected and analyzed for structural and functional differences.High Runner mice in general had lower ejection fractions compared to control mice lines(2-tailed p=0.0236)and tended to have thicker walls of the anterior portion of the left ventricle(p=0.065).However,a subset of the High Runner individuals,termed mini-muscle mice,had greater ejection fraction(p=0.0006),fractional shortening percentage(p<0.0001),and ventricular mass at dissection(p<0.0027 with body mass as a covariate)compared to non-mini muscle mice.Mice from replicate lines bred for high voluntary exercise did not all have inherent positive cardiac functional or structural characteristics,although a genetically unique subset of mini-muscle individuals did have greater functional cardiac characteristics,which in conjunction with their previously described peripheral aerobic enhancements(e.g.,increased capillarity)would partially account for their increased VO2max.