The main objective of this research is to study the mechanical behaviour of tropical soils using elasto-plastic constitutive equations in the so-called limit and critical states. Indeed, researchers of the Cambridge U...The main objective of this research is to study the mechanical behaviour of tropical soils using elasto-plastic constitutive equations in the so-called limit and critical states. Indeed, researchers of the Cambridge University had noticed that during their various experiments, the rate of volumetric deformation ( ) of the sample tending to zero every time the rupture of the specimen is reached during a test performed on a clay specimen Roscoe et al., 1958. To better understand and clarify this mechanical behaviour, a description has been proposed in the (e, p, q) representation that means void ratio, volumetric stress (spherical pressure) and deviatoric stress. This frame of theoretical study and apprehension is called: the theory of the Critical State. One of the major problems met at the time of our present research is the non-availability of triaxial apparatus allowing us to achieve some tests on tropical soils (samples from Senegal in West Africa) and to describe the behaviour of these materials easily like the researchers of the university of Cambridge in the theory of the critical state. To by-pass this difficulty, we decided to consider two very classical and simple mechanical tests: shear-box and the oedometer test as well as the interrelationship of the results given by the tests and some theoretical calculations. This is a way to identify an elasto-plastic model (the modified Cam Clay model) without any triaxial experiment. Indeed it supposes the model to be suitable to describe the mechanical behaviour of the considered clays.展开更多
Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed th...Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed through two stages of consecutive interpolation. The primary interpolation follows exactly the same procedure of standard FEM and is further reproduced according to both nodal values and averaged nodal gradients obtained from primary interpolation. The trial functions thus constructed have continuous nodal gradients and contain higher order polynomial without increasing total freedoms. Several benchmark examples and a real dam problem are used to examine the TFEM in terms of accuracy and convergence. Compared with standard FEM, TFEM can achieve significantly better accuracy and higher convergence rate, and the continuous nodal stress can be obtained without any smoothing operation. It is also found that TFEM is insensitive to the quality of the elemental mesh. In addition, the present TFEM can treat the incompressible material without any modification.展开更多
文摘The main objective of this research is to study the mechanical behaviour of tropical soils using elasto-plastic constitutive equations in the so-called limit and critical states. Indeed, researchers of the Cambridge University had noticed that during their various experiments, the rate of volumetric deformation ( ) of the sample tending to zero every time the rupture of the specimen is reached during a test performed on a clay specimen Roscoe et al., 1958. To better understand and clarify this mechanical behaviour, a description has been proposed in the (e, p, q) representation that means void ratio, volumetric stress (spherical pressure) and deviatoric stress. This frame of theoretical study and apprehension is called: the theory of the Critical State. One of the major problems met at the time of our present research is the non-availability of triaxial apparatus allowing us to achieve some tests on tropical soils (samples from Senegal in West Africa) and to describe the behaviour of these materials easily like the researchers of the university of Cambridge in the theory of the critical state. To by-pass this difficulty, we decided to consider two very classical and simple mechanical tests: shear-box and the oedometer test as well as the interrelationship of the results given by the tests and some theoretical calculations. This is a way to identify an elasto-plastic model (the modified Cam Clay model) without any triaxial experiment. Indeed it supposes the model to be suitable to describe the mechanical behaviour of the considered clays.
基金supported by the National Natural Science Foundation of China(50474053,50475134 and 50675081)the 863 project (2007AA042142)
文摘Formulation and numerical evaluation of a novel twice-interpolation finite element method (TFEM) is presented for solid mechanics problems. In this method, the trial function for Galerkin weak form is constructed through two stages of consecutive interpolation. The primary interpolation follows exactly the same procedure of standard FEM and is further reproduced according to both nodal values and averaged nodal gradients obtained from primary interpolation. The trial functions thus constructed have continuous nodal gradients and contain higher order polynomial without increasing total freedoms. Several benchmark examples and a real dam problem are used to examine the TFEM in terms of accuracy and convergence. Compared with standard FEM, TFEM can achieve significantly better accuracy and higher convergence rate, and the continuous nodal stress can be obtained without any smoothing operation. It is also found that TFEM is insensitive to the quality of the elemental mesh. In addition, the present TFEM can treat the incompressible material without any modification.