期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
结合VMD和Volterra预测模型的轴承振动信号特征提取 被引量:11
1
作者 张云强 张培林 +2 位作者 王怀光 杨玉栋 吴定海 《振动与冲击》 EI CSCD 北大核心 2018年第3期129-135,152,共8页
针对滚动轴承振动信号的非线性和非平稳性特点,提出了一种结合变分模式分解(VMD)和Volterra预测模型的轴承振动信号特征提取方法。利用VMD良好的非平稳信号分解能力将轴承振动信号分解成有限个平稳的本征模式函数(IMF)分量,然后对各IMF... 针对滚动轴承振动信号的非线性和非平稳性特点,提出了一种结合变分模式分解(VMD)和Volterra预测模型的轴承振动信号特征提取方法。利用VMD良好的非平稳信号分解能力将轴承振动信号分解成有限个平稳的本征模式函数(IMF)分量,然后对各IMF分量进行相空间重构,在重构的相空间内建立Volterra自适应预测模型,根据类内类间距准则对模型参数进行优选,用于描述轴承振动信号。对4种状态的滚动轴承振动信号进行了分析,优选的特征参数表现出较好的分类性能。实验结果表明,该方法能有效提取振动信号中的非线性和非平稳特征,从而提高滚动轴承故障诊断精度。 展开更多
关键词 滚动轴承 变分模式分解 volterra预测模型 故障诊断
下载PDF
语音信号序列的Volterra预测模型 被引量:8
2
作者 张玉梅 胡小俊 +2 位作者 吴晓军 白树林 路纲 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第20期117-129,共13页
对给定的英语音素、单词和语句进行了采集并完成预处理.分别应用互信息法和Cao氏法确定了实际采集的语音信号序列的延迟时间和嵌入维数,以完成语音序列的相空间重构.通过计算实际采集的语音信号序列的最大Lyapunov指数,完成了语音信号... 对给定的英语音素、单词和语句进行了采集并完成预处理.分别应用互信息法和Cao氏法确定了实际采集的语音信号序列的延迟时间和嵌入维数,以完成语音序列的相空间重构.通过计算实际采集的语音信号序列的最大Lyapunov指数,完成了语音信号的混沌特性识别,判定其具有混沌特性.引入Volterra级数,提出了一种具有显式结构的语音信号非线性预测模型.为克服最小均方误差算法在Volterra模型系数更新时固有的缺点,在最小二乘法基础上,应用基于后验误差假设的可变收敛因子技术,构建了一种基于Davidon-Fletcher-Powell算法的二阶Volterra模型(DFPSOVF),并将其应用于具有混沌特性的语音信号序列预测.仿真结果表明:DFPSOVF非线性预测模型对于单帧和多帧语音信号均具有更好的预测精度,优于线性预测模型,并且能够很好地反映语音序列变化的趋势和规律,完全可以满足语音预测的要求;可以根据语音信号序列的嵌入维数选取预测模型的记忆长度.所提出模型可以为语音信号重构和压缩编码开辟一条新途径,以改善语音信号处理方法的复杂度和处理效果. 展开更多
关键词 语音信号 混沌 volterra预测模型 Davidon-Fletcher-Powell算法
下载PDF
南洞地下河月径流时间序列的混沌特征及预测 被引量:9
3
作者 覃星铭 蒋忠诚 +2 位作者 蓝芙宁 马祖陆 赵一 《中国岩溶》 CAS CSCD 北大核心 2015年第4期341-347,共7页
利用基于相空间重构技术、混沌识别与预测理论对1993-2013年南洞地下河月径流时间序列的非线性特征进行了分析,由所获得的延迟时间和最佳嵌入维数实现了月径流时间序列的相空间重构,运用饱和关联维数法和小数据量法计算出南洞地下河月... 利用基于相空间重构技术、混沌识别与预测理论对1993-2013年南洞地下河月径流时间序列的非线性特征进行了分析,由所获得的延迟时间和最佳嵌入维数实现了月径流时间序列的相空间重构,运用饱和关联维数法和小数据量法计算出南洞地下河月径流时间序列的饱和关联维数和最大Lyapunov指数,并运用Volterra模型对南洞地下河月径流时间序列进行了多步预测研究。研究结果表明,南洞地下河月径流时间序列相空间重构的延迟时间和最佳嵌入维数分别为τ=5、m=8,饱和关联维数D和最大Lyapunov指数λ分别为4.63、0.748 9,从定性和定量的角度证明了南洞地下河月径流时间序列具有弱混沌特征。Volterra自适应滤波模型的预测结果能较好地表征南洞地下河月径流的变化趋势和规律,对18个月内的短期预测精度较高,模拟效果较好。 展开更多
关键词 月径流 相空间重构 混沌时间序列 volterra预测模型 南洞地下河
下载PDF
变分模态分解的Volterra模型和形态学分形维数在发动机故障诊断中的应用 被引量:4
4
作者 周小龙 刘薇娜 +1 位作者 姜振海 马风雷 《汽车工程》 EI CSCD 北大核心 2019年第12期1442-1449,1465,共9页
针对实测发动机故障信号的非线性和形态学分形维数难以对其有效估计的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)的Volterra模型和形态学分形维数相结合的发动机故障诊断方法。首先采用VMD方法对发动机故障信... 针对实测发动机故障信号的非线性和形态学分形维数难以对其有效估计的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)的Volterra模型和形态学分形维数相结合的发动机故障诊断方法。首先采用VMD方法对发动机故障信号进行分解,通过基于互信息熵能量熵增量的虚假固有模态函数(intrinsic mode function,IMF)分量剔除算法,将噪声和虚假干扰成分从信号内分离,对含有故障信息的敏感IMF分量重构,然后通过对重构信号相空间的重构,建立Volterra自适应预测模型,获取模型参数,最后计算模型参数向量的形态学分形维数,并将其作为量化的特征参数用于发动机工作状态和故障类型的识别。通过对实测发动机声振信号的分析,结果表明,该方法可有效提取发动机的状态特征信息,实现发动机异响的故障诊断。 展开更多
关键词 发动机 故障诊断 变分模态分解 volterra预测模型 数学形态学 分形维数
下载PDF
电力系统短期负荷新型Volterra预测模型研究 被引量:1
5
作者 惠萌 刘盼芝 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第9期24-29,共6页
针对电力系统负荷短时预测问题,从分析负荷数据的混沌特性入手,利用相空间重构理论对负荷数据进行重构,构建了一种新型的Volterra模型对电力系统负荷进行预测。该模型采用二次线性微分方程方法对原Volterra级数进行变换,与以往Volterra... 针对电力系统负荷短时预测问题,从分析负荷数据的混沌特性入手,利用相空间重构理论对负荷数据进行重构,构建了一种新型的Volterra模型对电力系统负荷进行预测。该模型采用二次线性微分方程方法对原Volterra级数进行变换,与以往Volterra级数相比,该模型无截断误差,包含了系统更多精确的信息。最后,以某地区实际用电负荷数据为对象进行验证,结果表明:该模型2d和4d用电负荷预测结果和实际结果误差不超过5%,完全能够满足电力调度需求,同时也为电力公司制定经济模型和实时电价调整提供了理论支持。 展开更多
关键词 电力系统 短期负荷 volterra预测模型
下载PDF
基于Volterra-PARAFAC模型的滚动轴承故障诊断方法 被引量:2
6
作者 杨诚 贾民平 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第4期742-748,共7页
为解决Volterra模型用于复杂机械系统非线性特征提取时存在估计参数过多的问题,提出了一种新的Volterra-PARAFAC预测模型.在非线性特征提取中,所提出的预测模型的估计参数数目大大低于传统的Volterra预测模型参数,有效地避免了维数灾难... 为解决Volterra模型用于复杂机械系统非线性特征提取时存在估计参数过多的问题,提出了一种新的Volterra-PARAFAC预测模型.在非线性特征提取中,所提出的预测模型的估计参数数目大大低于传统的Volterra预测模型参数,有效地避免了维数灾难问题.在Volterra-PARAFAC预测模型辨识过程中,利用最小均方自适应(LMS)算法估计Volterra-PARAFAC预测模型的核参数向量,从而精确描述非线性系统.利用该方法对滚动轴承多种故障状态下的振动信号进行分析,得到的特征向量具有非常好的分类性能.试验结果表明,该方法能有效提取复杂机械系统的非线性特征,并能准确对不同状态下的滚动轴承故障信号进行分类.相比于传统的Volterra模型故障诊断方法,所提方法能够更准确地对滚动轴承故障进行诊断. 展开更多
关键词 滚动轴承 volterra-PARAFAC预测模型 最小均方自适应算法 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部