In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space whic...In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.展开更多
Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solution...Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solutions method of third order nonlinear boundary value problems by making use of Volterra type integral operator was established. Specific upper and lower solutions were constructed, and existence and asymptotic estimates of solutions under suitable conditions were obtained. The result shows that it seems to be new to apply these techniques to solving these kinds of third order singularly perturbed boundary value problem. An example is given to demonstrate the applications.展开更多
In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the...In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the concept of a bivariate Meir-Keleer condensing operator and prove some coupled fixed point theorems. As an application, we prove the existence of solutions for a large class of functional integral equations of Volterra type in two variables.展开更多
The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we ded...The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus.展开更多
文摘In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.
文摘Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solutions method of third order nonlinear boundary value problems by making use of Volterra type integral operator was established. Specific upper and lower solutions were constructed, and existence and asymptotic estimates of solutions under suitable conditions were obtained. The result shows that it seems to be new to apply these techniques to solving these kinds of third order singularly perturbed boundary value problem. An example is given to demonstrate the applications.
文摘In this article, we introduce the notion of Meir-Keleer condensing operator in a Banach space, a characterization using L-functions and provide a few generalization of Darbo fixed point theorem. Also, we introduce the concept of a bivariate Meir-Keleer condensing operator and prove some coupled fixed point theorems. As an application, we prove the existence of solutions for a large class of functional integral equations of Volterra type in two variables.
文摘The aim of this paper is to study the existence of integrable solutions of a nonlinear functional integral equation in the space of Lebesgue integrable functions on unbounded interval, L1(R+). As an application we deduce the existence of solution of an initial value problem of fractional order that be studied only on a bounded interval. The main tools used are Schauder fixed point theorem, measure of weak noncompactness, superposition operator and fractional calculus.