This study characterized the physicochemical properties of sewage sludge collected from Gaza wastewater treatment plant. Sludge samples were collected from the drying beds, air-dried, sieved through 2 mm and stored in...This study characterized the physicochemical properties of sewage sludge collected from Gaza wastewater treatment plant. Sludge samples were collected from the drying beds, air-dried, sieved through 2 mm and stored in plastic bags at room temperature. Sludge density, particle size distribution, water holding capacity, void volume, pH, EC, total organic carbon and hydrophobicity were determined. Results showed the bulk density is about 1.18 g/cm3 whereas the real density is 2.12 g/cm3 and void volume is 50%;Particle size distribution showed that the major size of sludge is sand-like size (630 - 200 μm) and the minor size is silt-like size (200 - 20 μm) and clay-like size is less than 20 μm. Sludge has an acidic pH reaction (6.78 ± 0.02) with an electric conductivity equal to (2.49 ± 0.04) mS?cm-1. The hydrophobicity of sludge is very high, water drop penetration time (WDPT) is 114.77 ± 18.78 sec with a radius of 0.44 ± 0.08 cm. In the way around, oil drop penetration time (ODPT) of sludge is 5.05 ± 1.28 sec with a radius of 1.25 ± 0.14 cm. The WDPT/ODPM ration has very high value 22.73 indicating extreme hydrophobicity. High value of hydrophobicity may reduce water filtration in soil when sludge applied for agriculture. These results suggest that sludge application to soil may change the physicochemical properties of soil.展开更多
T At the forefront of energy storage field, developing sodium ion batteries (SIBs) has drew a wide concern due to relatively low cost and abundant resource, comparing with lithium ion batteries (LIBs). Serious vol...T At the forefront of energy storage field, developing sodium ion batteries (SIBs) has drew a wide concern due to relatively low cost and abundant resource, comparing with lithium ion batteries (LIBs). Serious volume expansion constraints the electrochemical performance of the conver- sion/alloying materials, despite of their high reversible capacities or theoretical capacities. Here, from the perspective of structural designs, we systemat- ically study four types of routes to accommodate volume expansion. Delicate and peculiar nanostructures based on nanocrystallization engineering are widely focused on, covering nanosheet assembly and nanoarray construction. Robust materials such as carbon-based materials can be utilized as the buffer matrix, mitigating the mechanical stress during the charge/discharge process. Besides, recent studies have demonstrated void space reservation in nanostructures was also beneficial for adapting to volume changes. Moreover, for conversion materials, numerous works have confirmed the advanta- geous influence of interlayer spacing regulation. We also explained the superiority and challenges for further giving scope to structural designs. Sketching out the future studies in SIBs, in situ characterizations are supposed to be highlighted, as well as in-depth researches on the stress evolution caused by volume expansion.展开更多
Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques o...Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques often require specialized equipment and skilled operators,posing practical challenges.In this study,a cost-effective photogrammetric approach is proposed.Particularly,local coordinate systems are established to facilitate the alignment and precise quantification of the relative position between two halves of a rock joint.Push/pull tests are conducted on rock joints with varying roughness levels to induce different contact states.A high-precision laser scanner serves as a benchmark for evaluating the photogrammetry method.Despite certain deviations exist,the measured evolution of void geometry is generally consistent with the qualitative findings of previous studies.The photogrammetric measurements yield comparable accuracy to laser scanning,with maximum errors of 13.2%for aperture and 14.4%for void volume.Most joint matching coefficient(JMC)measurement errors are below 20%.Larger measurement errors occur primarily in highly mismatched rock joints with JMC values below 0.2,but even in cases where measurement errors exceed 80%,the maximum JMC error is only 0.0434.Thus,the proposed photogrammetric approach holds promise for widespread application in void geometry measurements in rock joints.展开更多
Numerical simulations are performed to examine the packing behavior of human red blood cells(RBCs). A combined ?nite-discrete element method(FDEM) is utilized, in which the RBCs are modeled as no-friction and no-adhes...Numerical simulations are performed to examine the packing behavior of human red blood cells(RBCs). A combined ?nite-discrete element method(FDEM) is utilized, in which the RBCs are modeled as no-friction and no-adhesion solid bodies. The packed volume and the void ratio of a large number of randomly packed RBCs are clari?ed,and the effects of the RBC shape, the mesh size, the cell number, and the container size are investigated. The results show that the packed human RBCs with normal shape have a void ratio of 28.45%, which is slightly higher than that of the ?at or thick cells used in this study. Such information is bene?cial to the further understanding on the geometric features of human RBCs and the research on RBC simulations.展开更多
In this paper, a mathematical model for Love wave propagation in a porous elastic layer under a rigid boundary resting over a poro-elastic half-space has been developed. The study shows that such a medium transmits tw...In this paper, a mathematical model for Love wave propagation in a porous elastic layer under a rigid boundary resting over a poro-elastic half-space has been developed. The study shows that such a medium transmits two types of Love waves. The first front depends on the change in volume fraction of the pores whereas the second front depends upon the modulus of rigidity of the elastic matrix of the medium and is the same as the Love wave in an elastic layer over an elastic half-space. It is observed that the first front is many times faster than the shear wave in the medium with void pores due to the change in the volume fraction of the pores and is significant.展开更多
This study describes the performance of concrete in fresh state, intended for sealing deep bore-holes in the host rock of radioactive repositories. Set of different paste volumes, combinations of water-to-powder ratio...This study describes the performance of concrete in fresh state, intended for sealing deep bore-holes in the host rock of radioactive repositories. Set of different paste volumes, combinations of water-to-powder ratios and fine aggregate contents have been performed within the frame of this study. The main objective was to search for tendencies, logical connections and phenomena that occur for different combination of materials regarding the fluidity and segregation and mainly the effect from the (paste) or fine aggregate content. It shall be pointed out that this investigation is a suggestion on how concrete can be optimized using two simple test methods based on changing the paste content. The results highlighted the importance of having sufficient amounts of filler and cement paste for separate and carry larger particles, which gives the concrete good workability and fluidity at casting. It was concluded that the slump behaviors can be optimized based on the adjustments of the superplastisizer dosage.展开更多
文摘This study characterized the physicochemical properties of sewage sludge collected from Gaza wastewater treatment plant. Sludge samples were collected from the drying beds, air-dried, sieved through 2 mm and stored in plastic bags at room temperature. Sludge density, particle size distribution, water holding capacity, void volume, pH, EC, total organic carbon and hydrophobicity were determined. Results showed the bulk density is about 1.18 g/cm3 whereas the real density is 2.12 g/cm3 and void volume is 50%;Particle size distribution showed that the major size of sludge is sand-like size (630 - 200 μm) and the minor size is silt-like size (200 - 20 μm) and clay-like size is less than 20 μm. Sludge has an acidic pH reaction (6.78 ± 0.02) with an electric conductivity equal to (2.49 ± 0.04) mS?cm-1. The hydrophobicity of sludge is very high, water drop penetration time (WDPT) is 114.77 ± 18.78 sec with a radius of 0.44 ± 0.08 cm. In the way around, oil drop penetration time (ODPT) of sludge is 5.05 ± 1.28 sec with a radius of 1.25 ± 0.14 cm. The WDPT/ODPM ration has very high value 22.73 indicating extreme hydrophobicity. High value of hydrophobicity may reduce water filtration in soil when sludge applied for agriculture. These results suggest that sludge application to soil may change the physicochemical properties of soil.
文摘T At the forefront of energy storage field, developing sodium ion batteries (SIBs) has drew a wide concern due to relatively low cost and abundant resource, comparing with lithium ion batteries (LIBs). Serious volume expansion constraints the electrochemical performance of the conver- sion/alloying materials, despite of their high reversible capacities or theoretical capacities. Here, from the perspective of structural designs, we systemat- ically study four types of routes to accommodate volume expansion. Delicate and peculiar nanostructures based on nanocrystallization engineering are widely focused on, covering nanosheet assembly and nanoarray construction. Robust materials such as carbon-based materials can be utilized as the buffer matrix, mitigating the mechanical stress during the charge/discharge process. Besides, recent studies have demonstrated void space reservation in nanostructures was also beneficial for adapting to volume changes. Moreover, for conversion materials, numerous works have confirmed the advanta- geous influence of interlayer spacing regulation. We also explained the superiority and challenges for further giving scope to structural designs. Sketching out the future studies in SIBs, in situ characterizations are supposed to be highlighted, as well as in-depth researches on the stress evolution caused by volume expansion.
基金supported by the National Natural Science Foundation of China (Nos.42207175 and 42177117)the Ningbo Natural Science Foundation (No.2022J115)。
文摘Accurate measurement of the evolution of rock joint void geometry is essential for comprehending the distribution characteristics of asperities responsible for shear and seepage behaviors.However,existing techniques often require specialized equipment and skilled operators,posing practical challenges.In this study,a cost-effective photogrammetric approach is proposed.Particularly,local coordinate systems are established to facilitate the alignment and precise quantification of the relative position between two halves of a rock joint.Push/pull tests are conducted on rock joints with varying roughness levels to induce different contact states.A high-precision laser scanner serves as a benchmark for evaluating the photogrammetry method.Despite certain deviations exist,the measured evolution of void geometry is generally consistent with the qualitative findings of previous studies.The photogrammetric measurements yield comparable accuracy to laser scanning,with maximum errors of 13.2%for aperture and 14.4%for void volume.Most joint matching coefficient(JMC)measurement errors are below 20%.Larger measurement errors occur primarily in highly mismatched rock joints with JMC values below 0.2,but even in cases where measurement errors exceed 80%,the maximum JMC error is only 0.0434.Thus,the proposed photogrammetric approach holds promise for widespread application in void geometry measurements in rock joints.
基金Project supported by the Engineering and Physical Sciences Research Council(EPSRC)Turbulence Consortium Grant(No.EP/G069581/1)the Marie Curie International Incoming Fellowship(No.PIIF-GA-253453)
文摘Numerical simulations are performed to examine the packing behavior of human red blood cells(RBCs). A combined ?nite-discrete element method(FDEM) is utilized, in which the RBCs are modeled as no-friction and no-adhesion solid bodies. The packed volume and the void ratio of a large number of randomly packed RBCs are clari?ed,and the effects of the RBC shape, the mesh size, the cell number, and the container size are investigated. The results show that the packed human RBCs with normal shape have a void ratio of 28.45%, which is slightly higher than that of the ?at or thick cells used in this study. Such information is bene?cial to the further understanding on the geometric features of human RBCs and the research on RBC simulations.
文摘In this paper, a mathematical model for Love wave propagation in a porous elastic layer under a rigid boundary resting over a poro-elastic half-space has been developed. The study shows that such a medium transmits two types of Love waves. The first front depends on the change in volume fraction of the pores whereas the second front depends upon the modulus of rigidity of the elastic matrix of the medium and is the same as the Love wave in an elastic layer over an elastic half-space. It is observed that the first front is many times faster than the shear wave in the medium with void pores due to the change in the volume fraction of the pores and is significant.
文摘This study describes the performance of concrete in fresh state, intended for sealing deep bore-holes in the host rock of radioactive repositories. Set of different paste volumes, combinations of water-to-powder ratios and fine aggregate contents have been performed within the frame of this study. The main objective was to search for tendencies, logical connections and phenomena that occur for different combination of materials regarding the fluidity and segregation and mainly the effect from the (paste) or fine aggregate content. It shall be pointed out that this investigation is a suggestion on how concrete can be optimized using two simple test methods based on changing the paste content. The results highlighted the importance of having sufficient amounts of filler and cement paste for separate and carry larger particles, which gives the concrete good workability and fluidity at casting. It was concluded that the slump behaviors can be optimized based on the adjustments of the superplastisizer dosage.