The aim of this study was to prepare arsenic trioxide (ATO)-loaded stealth PEGylated PLGA nanoparticles (PEG-PLGA-NPs) and to assess the merits of PEG-PLGA-NPs as drug carriers for ATO delivery. PEG-PLGA copolymer...The aim of this study was to prepare arsenic trioxide (ATO)-loaded stealth PEGylated PLGA nanoparticles (PEG-PLGA-NPs) and to assess the merits of PEG-PLGA-NPs as drug carriers for ATO delivery. PEG-PLGA copolymer was synthesized with methoxypolyethyleneglycol (Mw=5000), D, L-lactide, and glycolide by the ring-opening polymerization method. Amorphous ATO was transformed into cubic crystal form to increase its solu-bility in the organic solvent. ATO-loaded PEG-PLGA-NPs were prepared by the modified spontaneous emulsification solvent diffusion (SESD) method, and the main experimental factors influencing the characteristics of nanopar- ticles were investigated, to optimize the preparation. To confirm the escape of PEG-PLGA-NPs from phagocytosis by phagocytes, PEG-PLGA-NPs labeled rhodamine B uptake by murine peritoneal macrophages (MPM) were analyzed by flow cytometry. The results showed that the physicochemical characteristics of PEG-PLGA-NPs were affected by the type and concentration of the emulsifiers, polymer concentration, and drug concentration. ATO-loaded PEG-PLGA-NPs, with particle size of 120.8nm, zeta potential of-10.73mV, encapsulation efficiency of 73.6%, and drug loading of 1.36%, were prepared under optimal conditions. The images of transmission electron micros-copy (TEM) indicated that the optimized nanoparticles were near spherical and without aggregation or adhesion. The release experiments in vitro showed the ATO release from PEG-PLGA-NPs exhibited consequently sustained release for more than 26d, which was in accordance with Higuchi equation. The uptake of PEG-PLGA-NPs by MPM was found to decrease markedly compared to PLGA-NPs. The experimental results showed that PEG-PLGA-NPs were potential nano drug delivery carriers for ATO.展开更多
In this study,chlorogenic acid(CGA),a phenolic compound widely distributed in fruits and vegetables,was encapsulated into chitosan nanoparticles by ionic gelation method.The particles exhibited the size and zeta poten...In this study,chlorogenic acid(CGA),a phenolic compound widely distributed in fruits and vegetables,was encapsulated into chitosan nanoparticles by ionic gelation method.The particles exhibited the size and zeta potential of 210 nm and 33 mV respectively.A regular,spherical shaped distribution of nanoparticles was observed through scanning electron microscopy(SEM)and the success of entrapment was confirmed by FTIR analysis.The encapsulation efficiency of CGA was at about 59%with the loading efficiency of 5.2%.In vitro ABTS assay indicated that the radical scavenging activity of CAG was retained in the nanostructure and further,the release kinetics study revealed the burst release of 69%CGA from nanoparticles at the end of 100th hours.Pharmacokinetic analysis in rats showed a lower level of Cmax,longer Tmax,longer MRT,larger AUC0et and AUC0e∞for the CGA nanoparticles compared to free CGA.Collectively,these results suggest that the synthesised nanoparticle with sustained release property can therefore ease the fortification of food-matrices targeted for health benefits through effective delivery of CGA in body.展开更多
Fish skin gelatin films incorporated with various concentrations of cinnamon essential oil(CEO)were prepared and characterized.The results showed that tensile strength(TS),elongation at break(EAB),and water content(WC...Fish skin gelatin films incorporated with various concentrations of cinnamon essential oil(CEO)were prepared and characterized.The results showed that tensile strength(TS),elongation at break(EAB),and water content(WC)of the gelatin based film decreased with the increasing concentrations of CEO,but water vapor permeability(WVP)increased.Addition of CEO improved light barrier property of the film.The Scanning electron microscope(SEM)showed that the heterogeneous surface and porous formation appeared in gelatin-CEO films.Fourier transform infrared spectroscopy analyses(FTIR-ATR)spectra indicated the interactions existed between gelatin and CEO.The gelatin-CEO films exhibited good inhibitory effects against the tested microorganisms(Escherichia coli,Staphylococcus aureus,Aspergillus niger,Rhizopus oryzae,and Paecilomyces varioti)and their antifungal activity seemed to be more effective than the resistance to bacterial growth.In vitro release studies showed an initial burst effect of CEO release and that subsequently slowed down at 40℃,but the initial burst release was not obvious at 4℃.The obtained results suggested that incorporation of CEO as a natural antimicrobial agent into gelatin film has potential for developing as active food packaging.展开更多
基金Supported by the Special Funds for Major State Basic Research Program of China (973 Program, No.2007CB935800)theNational High Technology Research and Development Program of China (863 Program, No.2004AA215162).
文摘The aim of this study was to prepare arsenic trioxide (ATO)-loaded stealth PEGylated PLGA nanoparticles (PEG-PLGA-NPs) and to assess the merits of PEG-PLGA-NPs as drug carriers for ATO delivery. PEG-PLGA copolymer was synthesized with methoxypolyethyleneglycol (Mw=5000), D, L-lactide, and glycolide by the ring-opening polymerization method. Amorphous ATO was transformed into cubic crystal form to increase its solu-bility in the organic solvent. ATO-loaded PEG-PLGA-NPs were prepared by the modified spontaneous emulsification solvent diffusion (SESD) method, and the main experimental factors influencing the characteristics of nanopar- ticles were investigated, to optimize the preparation. To confirm the escape of PEG-PLGA-NPs from phagocytosis by phagocytes, PEG-PLGA-NPs labeled rhodamine B uptake by murine peritoneal macrophages (MPM) were analyzed by flow cytometry. The results showed that the physicochemical characteristics of PEG-PLGA-NPs were affected by the type and concentration of the emulsifiers, polymer concentration, and drug concentration. ATO-loaded PEG-PLGA-NPs, with particle size of 120.8nm, zeta potential of-10.73mV, encapsulation efficiency of 73.6%, and drug loading of 1.36%, were prepared under optimal conditions. The images of transmission electron micros-copy (TEM) indicated that the optimized nanoparticles were near spherical and without aggregation or adhesion. The release experiments in vitro showed the ATO release from PEG-PLGA-NPs exhibited consequently sustained release for more than 26d, which was in accordance with Higuchi equation. The uptake of PEG-PLGA-NPs by MPM was found to decrease markedly compared to PLGA-NPs. The experimental results showed that PEG-PLGA-NPs were potential nano drug delivery carriers for ATO.
基金supported by DRDO,India.The authors are also thankful to the Director,DFRL,and Mysore for providing technical support and valuable suggestions.
文摘In this study,chlorogenic acid(CGA),a phenolic compound widely distributed in fruits and vegetables,was encapsulated into chitosan nanoparticles by ionic gelation method.The particles exhibited the size and zeta potential of 210 nm and 33 mV respectively.A regular,spherical shaped distribution of nanoparticles was observed through scanning electron microscopy(SEM)and the success of entrapment was confirmed by FTIR analysis.The encapsulation efficiency of CGA was at about 59%with the loading efficiency of 5.2%.In vitro ABTS assay indicated that the radical scavenging activity of CAG was retained in the nanostructure and further,the release kinetics study revealed the burst release of 69%CGA from nanoparticles at the end of 100th hours.Pharmacokinetic analysis in rats showed a lower level of Cmax,longer Tmax,longer MRT,larger AUC0et and AUC0e∞for the CGA nanoparticles compared to free CGA.Collectively,these results suggest that the synthesised nanoparticle with sustained release property can therefore ease the fortification of food-matrices targeted for health benefits through effective delivery of CGA in body.
基金This research was sponsored by the Education Scientific Research Foundation for Middle-aged and Young teachers of Education Department of Fujian Province(JAT160048)Opening Project of Fujian Provincial Engineering Technology Research Center of Marine Functional Food(C11178)Natural Science Foundation of Fujian Province(2015J01341,2016J01733).
文摘Fish skin gelatin films incorporated with various concentrations of cinnamon essential oil(CEO)were prepared and characterized.The results showed that tensile strength(TS),elongation at break(EAB),and water content(WC)of the gelatin based film decreased with the increasing concentrations of CEO,but water vapor permeability(WVP)increased.Addition of CEO improved light barrier property of the film.The Scanning electron microscope(SEM)showed that the heterogeneous surface and porous formation appeared in gelatin-CEO films.Fourier transform infrared spectroscopy analyses(FTIR-ATR)spectra indicated the interactions existed between gelatin and CEO.The gelatin-CEO films exhibited good inhibitory effects against the tested microorganisms(Escherichia coli,Staphylococcus aureus,Aspergillus niger,Rhizopus oryzae,and Paecilomyces varioti)and their antifungal activity seemed to be more effective than the resistance to bacterial growth.In vitro release studies showed an initial burst effect of CEO release and that subsequently slowed down at 40℃,but the initial burst release was not obvious at 4℃.The obtained results suggested that incorporation of CEO as a natural antimicrobial agent into gelatin film has potential for developing as active food packaging.