Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applicatio...Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applications have emerged, a deep understanding of achievements and issues remains lacking. We aim to provide a comprehensive review of recent progress in salient object detection and situate this field among other closely related areas such as generic scene segmentation, object proposal generation, and saliency for fixation prediction. Covering 228 publications, we survey i) roots, key concepts, and tasks, ii) core techniques and main modeling trends, and iii) datasets and evaluation metrics for salient object detection. We also discuss open problems such as evaluation metrics and dataset bias in model performance, and suggest future research directions.展开更多
This study explored the use of multi-physiological signals and simultaneously recorded high-density electroencephalography(EEG),electrocardiogram(ECG),and eye movements to better understand pilots’cognitive behaviour...This study explored the use of multi-physiological signals and simultaneously recorded high-density electroencephalography(EEG),electrocardiogram(ECG),and eye movements to better understand pilots’cognitive behaviour during flight simulator manoeuvres.Multimodal physiological signals were collected from 12 experienced pilots with international aviation qualifications under the wide-angle and impressive vision simulation.The data collection spanned two flight strike missions,each with three mission intensities,resulting in a data set of EEG,ECG,and eye movement signals from six subtasks.The multimodal data were analysed using signal processing methods.The results indicated that,when the flight missions were performed,the pilots’physiological characteristics exhibited rhythmic changes in the power spectrum ofθwaves in the EEG,r-MSSD in the ECG,and average gaze duration.Furthermore,the pilots’physiological signals were more sensitive during the target mission than during the empty target mission.The results also showed correlations between different physiological characteristics.We showed that specific multimodal features are useful for advancing neuroscience research into pilots’cognitive behaviour and processes related to brain activity,psychological rhythms,and eye movement.展开更多
文摘Detecting and segmenting salient objects from natural scenes, often referred to as salient object detection, has attracted great interest in computer vision. While many models have been proposed and several applications have emerged, a deep understanding of achievements and issues remains lacking. We aim to provide a comprehensive review of recent progress in salient object detection and situate this field among other closely related areas such as generic scene segmentation, object proposal generation, and saliency for fixation prediction. Covering 228 publications, we survey i) roots, key concepts, and tasks, ii) core techniques and main modeling trends, and iii) datasets and evaluation metrics for salient object detection. We also discuss open problems such as evaluation metrics and dataset bias in model performance, and suggest future research directions.
文摘This study explored the use of multi-physiological signals and simultaneously recorded high-density electroencephalography(EEG),electrocardiogram(ECG),and eye movements to better understand pilots’cognitive behaviour during flight simulator manoeuvres.Multimodal physiological signals were collected from 12 experienced pilots with international aviation qualifications under the wide-angle and impressive vision simulation.The data collection spanned two flight strike missions,each with three mission intensities,resulting in a data set of EEG,ECG,and eye movement signals from six subtasks.The multimodal data were analysed using signal processing methods.The results indicated that,when the flight missions were performed,the pilots’physiological characteristics exhibited rhythmic changes in the power spectrum ofθwaves in the EEG,r-MSSD in the ECG,and average gaze duration.Furthermore,the pilots’physiological signals were more sensitive during the target mission than during the empty target mission.The results also showed correlations between different physiological characteristics.We showed that specific multimodal features are useful for advancing neuroscience research into pilots’cognitive behaviour and processes related to brain activity,psychological rhythms,and eye movement.