Nonlinear viscoelastic creep properties of poly (methyl methacrylate) at various temperatures and stress levels were measured in short-term tests to check the applicability of time-temperature-stress superposition p...Nonlinear viscoelastic creep properties of poly (methyl methacrylate) at various temperatures and stress levels were measured in short-term tests to check the applicability of time-temperature-stress superposition principle, which is the combined form of time-temperature superposition principle and time-stress superposition principle. A unified master creep compli- ance curve was constructed from the short-term tests by joint application of time-temperature superposition and time-stress superposition. The unified master curve establishes the creep com- pliance over two years, which is 4.2 decades longer than the test duration. Moreover, it is verified that in nonlinear viscoelastic cases, the time-temperature shift factors are dependent on stresses at which the shifts are applied, while the time-stress shift factors are dependent on temperatures.展开更多
The pore throat of porous media is modeled as a constricted channel or expanded channel. The flow of viscoelastic polymer solution in pore throat model is studied by numerical method. Relationship between pressure dro...The pore throat of porous media is modeled as a constricted channel or expanded channel. The flow of viscoelastic polymer solution in pore throat model is studied by numerical method. Relationship between pressure drop and flow rate is developed, viscoelasticity and throat size are found to be two main factors in high flow resistance. According to pore throat model, 2-D stochastic channel bundle is put forward to model porous media, which is composed of pore throat models in series - parallel connection with size and length accord to Hating Greenkorn stochastic distribution. Percolation model of viscoelastic fluid is developed on the basis of Darcy equation and pressure drop vs. flow rate relation in 2-D stochastic channel bundle. Results indicate that the seepage ability of viscoelastic polymer solution decreases with the increase of viscoelasticity, injection rate, and heterogeneity as well as the decrease of mean pore size of porous media. The high pressure drop of viscoelastic fluid at the connection of pore to throat plays a great role in its anomalous high flow resistance through porous media.展开更多
我国海上稠油资源比较丰富,但由于受到海上条件等因素限制,聚合物驱成为提高海上稠油采收率的主要方法.因此深化聚合物溶液驱稠油微观渗流机理对于进一步提高采收率具有十分重要的意义.目前关于粘弹性聚合物渗流机理的理论研究主要局限...我国海上稠油资源比较丰富,但由于受到海上条件等因素限制,聚合物驱成为提高海上稠油采收率的主要方法.因此深化聚合物溶液驱稠油微观渗流机理对于进一步提高采收率具有十分重要的意义.目前关于粘弹性聚合物渗流机理的理论研究主要局限于弹性聚合物溶液的单相流体在微观孔道内流动特征研究,而针对粘弹性聚合物、油两相流体渗流机理的研究甚少,特别是针对稠油聚合物驱的相关研究未见报道.为此,借助于计算方法较为成熟的OpenFOAM开源平台开展了聚合物驱稠油两相流体渗流机理的研究;以收缩孔道为微观物理模型,建立了粘弹性聚合物溶液、普通稠油两相渗流连续性方程、运动方程及本构方程,并采用VOF(volume of fluid)界面追踪方法建立两相界面相方程;以OpenFOAM开源平台为基础,开发了粘弹性流体、幂律流体两相流体求解器;绘制了不同弹性聚合物溶液在微观孔道内驱油的饱和度分布、速度分布及应力分布特征.结果表明,相对于水驱,纯粘性聚合物溶液前缘突破时间慢,波及面积大,驱油效率高.相比于同等粘度的纯粘性聚合物溶液,粘弹性聚合物的弹性有助于挖潜凸角内的残余油,聚合物溶液的弹性越大,稠油驱油效率越高.随着聚合物溶液弹性的增强,第一法向应力增大,当聚合物溶液进入到孔道突变处时,其弹性发挥的作用最大,法向应力的值最大.研究结果可为矿场实施聚合物驱设计、筛选聚合物溶液提供重要的理论支持.展开更多
基金supported by NSFC(No. 11172256)NCET (No. NCET-08-0685)+1 种基金Key Project of Chinese Ministry of Education (No. 209085)Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
文摘Nonlinear viscoelastic creep properties of poly (methyl methacrylate) at various temperatures and stress levels were measured in short-term tests to check the applicability of time-temperature-stress superposition principle, which is the combined form of time-temperature superposition principle and time-stress superposition principle. A unified master creep compli- ance curve was constructed from the short-term tests by joint application of time-temperature superposition and time-stress superposition. The unified master curve establishes the creep com- pliance over two years, which is 4.2 decades longer than the test duration. Moreover, it is verified that in nonlinear viscoelastic cases, the time-temperature shift factors are dependent on stresses at which the shifts are applied, while the time-stress shift factors are dependent on temperatures.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50574060)National Basic Research Program of China (Grant No. 2005CB221300).
文摘The pore throat of porous media is modeled as a constricted channel or expanded channel. The flow of viscoelastic polymer solution in pore throat model is studied by numerical method. Relationship between pressure drop and flow rate is developed, viscoelasticity and throat size are found to be two main factors in high flow resistance. According to pore throat model, 2-D stochastic channel bundle is put forward to model porous media, which is composed of pore throat models in series - parallel connection with size and length accord to Hating Greenkorn stochastic distribution. Percolation model of viscoelastic fluid is developed on the basis of Darcy equation and pressure drop vs. flow rate relation in 2-D stochastic channel bundle. Results indicate that the seepage ability of viscoelastic polymer solution decreases with the increase of viscoelasticity, injection rate, and heterogeneity as well as the decrease of mean pore size of porous media. The high pressure drop of viscoelastic fluid at the connection of pore to throat plays a great role in its anomalous high flow resistance through porous media.
文摘我国海上稠油资源比较丰富,但由于受到海上条件等因素限制,聚合物驱成为提高海上稠油采收率的主要方法.因此深化聚合物溶液驱稠油微观渗流机理对于进一步提高采收率具有十分重要的意义.目前关于粘弹性聚合物渗流机理的理论研究主要局限于弹性聚合物溶液的单相流体在微观孔道内流动特征研究,而针对粘弹性聚合物、油两相流体渗流机理的研究甚少,特别是针对稠油聚合物驱的相关研究未见报道.为此,借助于计算方法较为成熟的OpenFOAM开源平台开展了聚合物驱稠油两相流体渗流机理的研究;以收缩孔道为微观物理模型,建立了粘弹性聚合物溶液、普通稠油两相渗流连续性方程、运动方程及本构方程,并采用VOF(volume of fluid)界面追踪方法建立两相界面相方程;以OpenFOAM开源平台为基础,开发了粘弹性流体、幂律流体两相流体求解器;绘制了不同弹性聚合物溶液在微观孔道内驱油的饱和度分布、速度分布及应力分布特征.结果表明,相对于水驱,纯粘性聚合物溶液前缘突破时间慢,波及面积大,驱油效率高.相比于同等粘度的纯粘性聚合物溶液,粘弹性聚合物的弹性有助于挖潜凸角内的残余油,聚合物溶液的弹性越大,稠油驱油效率越高.随着聚合物溶液弹性的增强,第一法向应力增大,当聚合物溶液进入到孔道突变处时,其弹性发挥的作用最大,法向应力的值最大.研究结果可为矿场实施聚合物驱设计、筛选聚合物溶液提供重要的理论支持.