Theoretical investigation of the lowest electronic states of ScS molecule, in the representation 2s+1Λ(+/-), has been performed via CASSCF and MRCI (single and double excitations without Davidson correction) calculat...Theoretical investigation of the lowest electronic states of ScS molecule, in the representation 2s+1Λ(+/-), has been performed via CASSCF and MRCI (single and double excitations without Davidson correction) calculations. The calculated potential energy curves (PECs), permanent dipole moment curves (PDMCs), and spectroscopic constants are reported for the 10 lowest electronic states. The eigenvalues Ev, the rotational constants Bv, and the centrifugal distortion constants Dv have been calculated for various vibrational levels. The comparison of the present results with the available experimental data in literature shows an overall good agreement. To the best of our knowledge, 6 electronic states of the ScS molecule, between 11600 cm-1 and 15000 cm-1 are not yet observed experimentally and are investigated in the present work for the first time.展开更多
Complete Active Space Self Consistent Field (CASSCF) with Multireference Configuration Interaction (MRCI) and Rayleigh-Schrodinger Perturbation Theory (RSPT2-RS2) methods have been used to investigate the potential en...Complete Active Space Self Consistent Field (CASSCF) with Multireference Configuration Interaction (MRCI) and Rayleigh-Schrodinger Perturbation Theory (RSPT2-RS2) methods have been used to investigate the potential energy curves for the 12 low-lying singlet and triplet electronic states in the representation 2s+1Λ(+/-) of the molecule BaS with Davidson corrections. The harmonic frequency we, the internuclear distance Re, the electronic energy with respect to the ground state Te, the rotational constants Be and the permanent dipole moment have been calculated for these electronic states. The eigenvalues Ev, the rotational constants Bv, the centrifugal distortion constant Dv and the abscissas of the turning points Rmin and Rmax have been investigated using the canonical functions approach. Nine new electronic states have been investigated here for the first time. The comparison between the values of the present work and those available in the literature for several electronic states shows a good agreement.展开更多
文摘Theoretical investigation of the lowest electronic states of ScS molecule, in the representation 2s+1Λ(+/-), has been performed via CASSCF and MRCI (single and double excitations without Davidson correction) calculations. The calculated potential energy curves (PECs), permanent dipole moment curves (PDMCs), and spectroscopic constants are reported for the 10 lowest electronic states. The eigenvalues Ev, the rotational constants Bv, and the centrifugal distortion constants Dv have been calculated for various vibrational levels. The comparison of the present results with the available experimental data in literature shows an overall good agreement. To the best of our knowledge, 6 electronic states of the ScS molecule, between 11600 cm-1 and 15000 cm-1 are not yet observed experimentally and are investigated in the present work for the first time.
文摘Complete Active Space Self Consistent Field (CASSCF) with Multireference Configuration Interaction (MRCI) and Rayleigh-Schrodinger Perturbation Theory (RSPT2-RS2) methods have been used to investigate the potential energy curves for the 12 low-lying singlet and triplet electronic states in the representation 2s+1Λ(+/-) of the molecule BaS with Davidson corrections. The harmonic frequency we, the internuclear distance Re, the electronic energy with respect to the ground state Te, the rotational constants Be and the permanent dipole moment have been calculated for these electronic states. The eigenvalues Ev, the rotational constants Bv, the centrifugal distortion constant Dv and the abscissas of the turning points Rmin and Rmax have been investigated using the canonical functions approach. Nine new electronic states have been investigated here for the first time. The comparison between the values of the present work and those available in the literature for several electronic states shows a good agreement.