This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into f...This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.展开更多
The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platf...The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.展开更多
The rolling mill vibration not only seriously causes the strip thickness heterogeneity, but also damages the rolling mill equipment and its electrical components. Existing vibration suppression methods are passive and...The rolling mill vibration not only seriously causes the strip thickness heterogeneity, but also damages the rolling mill equipment and its electrical components. Existing vibration suppression methods are passive and mainly tune mechanical, hydraulic, electrical and rolling process parameters. A new active vibration suppression method was thus proposed using the disturbance estimation and compensation algorithm. Firstly, the hydraulic-mechanical coupling model of the rolling mill vibration was established, and an active vibration suppressor was designed based on the extended state observer. Then, through the numerical simulation, it is found that the vibration energy is reduced by 35.3% using the vibration suppressor, and the vibration suppressor is valid when the vibration frequency is lower than 60 Hz Finally, the vibration suppressor was applied to the in-site manufacturing, and the expected vibration suppression was obtained. The method makes the produced steel strip have more uniform thickness and further significantly increases the finished product ratio.展开更多
基金National Natural Science Foundation of China under Grand No.51808190the Central Government Guides Local Science and Technology Development Fund Projects under Grand No.XZ202301YD0019C+2 种基金the Foundation of Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University)Ministry of Education under Grand No.2022P04the Central University Basic Research Fund of China under Grand No.B220202017。
文摘This research is concentrated on the longitudinal vibration of a tapered pipe pile considering the vertical support of the surrounding soil and construction disturbance.First,the pile-soil system is partitioned into finite segments in the vertical direction and the Voigt model is applied to simulate the vertical support of the surrounding soil acting on the pile segment.The surrounding soil is divided into finite ring-shaped zones in the radial direction to consider the construction disturbance.Then,the shear complex stiffness at the pile-soil interface is derived by solving the dynamic equilibrium equation for the soil from the outermost to innermost zone.The displacement impedance at the top of an arbitrary pile segment is obtained by solving the dynamic equilibrium equation for the pile and is combined with the vertical support of the surrounding soil to derive the displacement impedance at the bottom of the upper adjacent segment.Further,the displacement impedance at the pile head is obtained based on the impedance function transfer technique.Finally,the reliability of the proposed solution is verified,followed by a sensitivity analysis concerning the coupling effect of the pile parameters,construction disturbance and the vertical support of the surrounding soil on the displacement impedance of the pile.
基金the National Natural Science Foundation of China (No. 11572215)the Fundamental Research Funds for the Central Universities (No. N160503002)the China Scholarship Council。
文摘The hybrid vibration isolation, which takes advantages of both the passive and active approaches, has been an important solution for space missions. The objective of this paper is to design a vibration isolation platform for payloads on spacecrafts with the robust, wide bandwidth, and multi-degree-of-freedom(MDOF). The proposed solution is based on a parallel mechanism with six voice-coil motors(VCMs) as the actuators. The linear active disturbance resistance control(LADRC) algorithm is used for the active control. Numerical simulation results show that the vibration isolation platform performs effectively over a wide bandwidth, and the resonance introduced by the passive isolation is eliminated. The system robustness to the uncertainties of the structure is also verified by simulation.
文摘The rolling mill vibration not only seriously causes the strip thickness heterogeneity, but also damages the rolling mill equipment and its electrical components. Existing vibration suppression methods are passive and mainly tune mechanical, hydraulic, electrical and rolling process parameters. A new active vibration suppression method was thus proposed using the disturbance estimation and compensation algorithm. Firstly, the hydraulic-mechanical coupling model of the rolling mill vibration was established, and an active vibration suppressor was designed based on the extended state observer. Then, through the numerical simulation, it is found that the vibration energy is reduced by 35.3% using the vibration suppressor, and the vibration suppressor is valid when the vibration frequency is lower than 60 Hz Finally, the vibration suppressor was applied to the in-site manufacturing, and the expected vibration suppression was obtained. The method makes the produced steel strip have more uniform thickness and further significantly increases the finished product ratio.