This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed...This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions(Al2 O3, Mg O-Al2 O3) and the matrix, while other cracks originated from the interior of inclusions(Ti N, Mn S). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.展开更多
The competition of surface and subsurface crack initiation induced failure is critical to understand very high cycle fatigue(VHCF) behavior, which necessitates the elucidation of the underlying mechanisms for the tr...The competition of surface and subsurface crack initiation induced failure is critical to understand very high cycle fatigue(VHCF) behavior, which necessitates the elucidation of the underlying mechanisms for the transition of crack initiation from surface to interior defects. Crack initiation potential in materials containing defects is investigated numerically by focusing on defect types, size, shape, location, and residual stress influences. Results show that the crack initiation potency is higher in case of serious property mismatching between matrix and defects, and higher strength materials are more sensitive to soft inclusions(elastic modulus lower than the matrix). The stress localization around inclusions are correlated to interior crack initiation mechanisms in the VHCF regime such as inclusion-matrix debonding at soft inclusions and inclusion-cracking for hard inclusions(elastic modulus higher than the matrix). It is easier to emanate cracks from the subsurface pores with the depth 0.7 times as large as their diameter. There exists an inclusion size independent region for crack incubation, outside which crack initiation will transfer from the subsurface soft inclusion to the interior larger one. As for elliptical inclusions, reducing the short-axis length can decrease the crack nucleation potential and promote the interior crack formation, whereas the long-axis length controls the site of peak stress concentration. The compressive residual stress at surface is helpful to shift crack initiation from surface to interior inclusions. Some relaxation of residual stress can not change the inherent crack initiation from interior inclusions in the VHCF regime. The work reveals the crack initiation potential and the transition among various defects under the influences of both intrinsic and extrinsic factors in the VHCF regime, and is helpful to understand the failure mechanism of materials containing defects under long-term cyclic loadings.展开更多
通过实验研究了2种频率(110 Hz和20 k Hz)循环载荷作用下航空发动机叶片材料TC17合金的超高周疲劳失效行为,分析了不同失效形式下的裂纹萌生机理。结果表明,TC17合金在2种实验载荷频率下均存在表面和内部萌生裂纹诱发疲劳失效2种失效形...通过实验研究了2种频率(110 Hz和20 k Hz)循环载荷作用下航空发动机叶片材料TC17合金的超高周疲劳失效行为,分析了不同失效形式下的裂纹萌生机理。结果表明,TC17合金在2种实验载荷频率下均存在表面和内部萌生裂纹诱发疲劳失效2种失效形式,表面萌生裂纹诱发的疲劳失效主要是由加工缺陷和循环载荷作用下试样表面滑移处应力集中引起的横向裂纹所致,内部萌生裂纹诱发的疲劳失效是由循环载荷作用下材料初生α相的滑移断裂所致。失效机理的不同使得材料的应力-疲劳寿命(S-N)曲线呈双线性,载荷频率对TC17合金的裂纹萌生形式和萌生机理的影响不显著。建立了基于薄弱取向晶粒区域尺寸的疲劳强度预测模型,模型预测值与实验值吻合较好。展开更多
基金financially supported by the State Key Laboratory for Advanced Metallurgy Foundation (No.41614014)the National Natural Science Foundation of China (No.51774031)
文摘This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions(Al2 O3, Mg O-Al2 O3) and the matrix, while other cracks originated from the interior of inclusions(Ti N, Mn S). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.
基金Supported by National Natural Science Foundation of China(Grant No.51205131)Shanghai Provincial Natural Science Foundation of China(Grant No.12ZR1442900)Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20120074120010)
文摘The competition of surface and subsurface crack initiation induced failure is critical to understand very high cycle fatigue(VHCF) behavior, which necessitates the elucidation of the underlying mechanisms for the transition of crack initiation from surface to interior defects. Crack initiation potential in materials containing defects is investigated numerically by focusing on defect types, size, shape, location, and residual stress influences. Results show that the crack initiation potency is higher in case of serious property mismatching between matrix and defects, and higher strength materials are more sensitive to soft inclusions(elastic modulus lower than the matrix). The stress localization around inclusions are correlated to interior crack initiation mechanisms in the VHCF regime such as inclusion-matrix debonding at soft inclusions and inclusion-cracking for hard inclusions(elastic modulus higher than the matrix). It is easier to emanate cracks from the subsurface pores with the depth 0.7 times as large as their diameter. There exists an inclusion size independent region for crack incubation, outside which crack initiation will transfer from the subsurface soft inclusion to the interior larger one. As for elliptical inclusions, reducing the short-axis length can decrease the crack nucleation potential and promote the interior crack formation, whereas the long-axis length controls the site of peak stress concentration. The compressive residual stress at surface is helpful to shift crack initiation from surface to interior inclusions. Some relaxation of residual stress can not change the inherent crack initiation from interior inclusions in the VHCF regime. The work reveals the crack initiation potential and the transition among various defects under the influences of both intrinsic and extrinsic factors in the VHCF regime, and is helpful to understand the failure mechanism of materials containing defects under long-term cyclic loadings.
文摘通过实验研究了2种频率(110 Hz和20 k Hz)循环载荷作用下航空发动机叶片材料TC17合金的超高周疲劳失效行为,分析了不同失效形式下的裂纹萌生机理。结果表明,TC17合金在2种实验载荷频率下均存在表面和内部萌生裂纹诱发疲劳失效2种失效形式,表面萌生裂纹诱发的疲劳失效主要是由加工缺陷和循环载荷作用下试样表面滑移处应力集中引起的横向裂纹所致,内部萌生裂纹诱发的疲劳失效是由循环载荷作用下材料初生α相的滑移断裂所致。失效机理的不同使得材料的应力-疲劳寿命(S-N)曲线呈双线性,载荷频率对TC17合金的裂纹萌生形式和萌生机理的影响不显著。建立了基于薄弱取向晶粒区域尺寸的疲劳强度预测模型,模型预测值与实验值吻合较好。