The distribution of soil organic matter (SOM) and nitrogen on Gongga Mountain was studied in this paper. The results showed that the content of SOM and nitrogen (N) of A horizon had an ascending trend with the increas...The distribution of soil organic matter (SOM) and nitrogen on Gongga Mountain was studied in this paper. The results showed that the content of SOM and nitrogen (N) of A horizon had an ascending trend with the increase of the elevation. The vegetation types distributed higher than the mixed broad-leaved and coniferous forest have the irregular trends. In the transitional zone vegetation such as mixed trees and treeline, the content of SOM and N is higher than other vegetation types. The distribution of SOM and N of A horizon is dependent on the synthetic effect of climate and vegetation types. The vertical distribution of SOM and N in soil profiles has the similar trends for all kinds of vegetation types, i.e., the content of A horizon is higher than that of the B and C horizons, which is the same to the distribution of dead animal and plant in soil. The soil C:N is between 7 and 25, which is relatively low comparing to the appropriate C:N of 25-30. The ratio of soil carbon to nitrogen (C:N)increases with the increase of the elevation, but its vertical distribution in soil horizons varies with different vegetation types. The N exists in SOM mainly in the form of organic nitrogen, and the soil C:N correlates significantly with SOM.展开更多
Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surfac...Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surface energy balance over a complex underlying surface,this paper calculates the soil heat storage and vertical sensible heat advection,analyzes their contributions to the surface energy imbalance,and discusses the mechanism by which the vertical velocity and temperature gradient in the surface layer affect the vertical sensible heat advection transfer.We found that the vertical velocity in the surface layer provides the necessary dynamic power for vertical sensible heat advection,and a relatively strong temperature gradient is the energy source generating vertical sensible heat advection.Under an ascending condition,the effect of vertical sensible heat advection on the surface energy budget is more obvious.It is also found that when the soil heat storage term and the vertical sensible heat advection term are added to the energy balance equation,the imbalance significantly improves.The peak of average diurnal residuals decreases from 125.1 to 41.5 W m-2,the daily average absolute value of residuals falls from 59.0 to 26.4 W m-2,and the surface energy balance closure increases from 78.4% to 94.0%.展开更多
Study of the characteristics of the crustal magnetic anomaly in the Qinghai-Tibet Plateau and the adjacent areas helps better understand the lithospheric structure and evolution, as well as the regional geodynamic pro...Study of the characteristics of the crustal magnetic anomaly in the Qinghai-Tibet Plateau and the adjacent areas helps better understand the lithospheric structure and evolution, as well as the regional geodynamic processes. Here we analyze the distri- bution laws of the crustal magnetic anomaly and its vertical gradient, the decay characteristics of the anomaly, the contribu- tions from different wavelength bands to the anomaly, and the relationship between the anomaly and the crustal regional tec- tonics in the plateau and nearby, based on a new and higher degree geomagnetic model NGDC-EMM-720-V3 constructed from the surface, aeromagnetic, marine and satellite survey data. The results reveal that the positive and negative anomalies in the Qinghai-Tibet Plateau are weak, while those of the surrounding areas are strong. The boundary agrees well with the border of the plateau regional tectonics. The anomaly is nearly east-west in the central and western plateau, arc-shaped in the south- western and eastern, and nearly north-south in the southeastern, consistent with the tectonic trends. There are strong negative anomaly loci in the east and west syntaxis, whereas no significant differences exist among the Cenozoic blocks in the plateau interior. No direct correspondence exists between the anomaly and the crustal depth. On the background of a weak magnetic anomaly in the plateau, relatively stronger short wavelength fields from the shallower crust are overlapped in the Lhasa, Qilian, Qaidam, and Sichuan-Yunnan rhombic blocks. A strong negative anomaly in the east-west direction is distributed along the Himalayas, mainly caused by the middle and long wavelength bands in the deep and central crust. The magnetic structural lay- ers are stable in the Sichuan and Tarim basins. The anomalies at different altitudes over the southern plateau vary strongly, showing a drastic variation in the magnetic structure from the deep crust to the shallow crust.展开更多
文摘The distribution of soil organic matter (SOM) and nitrogen on Gongga Mountain was studied in this paper. The results showed that the content of SOM and nitrogen (N) of A horizon had an ascending trend with the increase of the elevation. The vegetation types distributed higher than the mixed broad-leaved and coniferous forest have the irregular trends. In the transitional zone vegetation such as mixed trees and treeline, the content of SOM and N is higher than other vegetation types. The distribution of SOM and N of A horizon is dependent on the synthetic effect of climate and vegetation types. The vertical distribution of SOM and N in soil profiles has the similar trends for all kinds of vegetation types, i.e., the content of A horizon is higher than that of the B and C horizons, which is the same to the distribution of dead animal and plant in soil. The soil C:N is between 7 and 25, which is relatively low comparing to the appropriate C:N of 25-30. The ratio of soil carbon to nitrogen (C:N)increases with the increase of the elevation, but its vertical distribution in soil horizons varies with different vegetation types. The N exists in SOM mainly in the form of organic nitrogen, and the soil C:N correlates significantly with SOM.
基金supported by the National Natural Science Foundation of China (Grant No.40830597)the Public Welfare Research Project of China (Grant No.GYHY200806021)
文摘Little is known about the surface energy balance problem for a complex underlying surface.Taking data from the Loess Plateau Land-surface Processes Experiment(LOPEX) and investigating the characteristics of the surface energy balance over a complex underlying surface,this paper calculates the soil heat storage and vertical sensible heat advection,analyzes their contributions to the surface energy imbalance,and discusses the mechanism by which the vertical velocity and temperature gradient in the surface layer affect the vertical sensible heat advection transfer.We found that the vertical velocity in the surface layer provides the necessary dynamic power for vertical sensible heat advection,and a relatively strong temperature gradient is the energy source generating vertical sensible heat advection.Under an ascending condition,the effect of vertical sensible heat advection on the surface energy budget is more obvious.It is also found that when the soil heat storage term and the vertical sensible heat advection term are added to the energy balance equation,the imbalance significantly improves.The peak of average diurnal residuals decreases from 125.1 to 41.5 W m-2,the daily average absolute value of residuals falls from 59.0 to 26.4 W m-2,and the surface energy balance closure increases from 78.4% to 94.0%.
基金sponsored by National Natural Science Foundation of China (Grant Nos. 40464001 and 40864002)
文摘Study of the characteristics of the crustal magnetic anomaly in the Qinghai-Tibet Plateau and the adjacent areas helps better understand the lithospheric structure and evolution, as well as the regional geodynamic processes. Here we analyze the distri- bution laws of the crustal magnetic anomaly and its vertical gradient, the decay characteristics of the anomaly, the contribu- tions from different wavelength bands to the anomaly, and the relationship between the anomaly and the crustal regional tec- tonics in the plateau and nearby, based on a new and higher degree geomagnetic model NGDC-EMM-720-V3 constructed from the surface, aeromagnetic, marine and satellite survey data. The results reveal that the positive and negative anomalies in the Qinghai-Tibet Plateau are weak, while those of the surrounding areas are strong. The boundary agrees well with the border of the plateau regional tectonics. The anomaly is nearly east-west in the central and western plateau, arc-shaped in the south- western and eastern, and nearly north-south in the southeastern, consistent with the tectonic trends. There are strong negative anomaly loci in the east and west syntaxis, whereas no significant differences exist among the Cenozoic blocks in the plateau interior. No direct correspondence exists between the anomaly and the crustal depth. On the background of a weak magnetic anomaly in the plateau, relatively stronger short wavelength fields from the shallower crust are overlapped in the Lhasa, Qilian, Qaidam, and Sichuan-Yunnan rhombic blocks. A strong negative anomaly in the east-west direction is distributed along the Himalayas, mainly caused by the middle and long wavelength bands in the deep and central crust. The magnetic structural lay- ers are stable in the Sichuan and Tarim basins. The anomalies at different altitudes over the southern plateau vary strongly, showing a drastic variation in the magnetic structure from the deep crust to the shallow crust.