The feeding of coarse particles (>0.5 mm diameter) directly into a riser operating at positive pressure is important for drying and pre-heating applications. The presence of the feeding device can lead to heterogen...The feeding of coarse particles (>0.5 mm diameter) directly into a riser operating at positive pressure is important for drying and pre-heating applications. The presence of the feeding device can lead to heterogeneity of drying and heating, and is the main factor responsible for pressure loss in short conveying systems. However, there is a lack of information concerning the axial and radial distributions of coarse particles in this type of configuration, despite the recent advances when dealing with fine particles (FCC catalyst). The present work therefore investigates a vertical venturi feeder with the conveying system operating in dilute-phase regime with 1 mm spherical glass particles. Experimental assays revealed the behavior of the mass flow rate of solids in the system, and pressure measurements were made along the riser in order to evaluate the accuracy of simulations. Euler-Euler simulations provided close estimation of the experimental pressure drop and the pressure drop according to distance in the linear region. Simulation of the fluid dynamics in the riser showed that solids clusters were formed at low concentrations near the feeding device, reflecting heterogeneity in the solid phase volume fraction.展开更多
文摘The feeding of coarse particles (>0.5 mm diameter) directly into a riser operating at positive pressure is important for drying and pre-heating applications. The presence of the feeding device can lead to heterogeneity of drying and heating, and is the main factor responsible for pressure loss in short conveying systems. However, there is a lack of information concerning the axial and radial distributions of coarse particles in this type of configuration, despite the recent advances when dealing with fine particles (FCC catalyst). The present work therefore investigates a vertical venturi feeder with the conveying system operating in dilute-phase regime with 1 mm spherical glass particles. Experimental assays revealed the behavior of the mass flow rate of solids in the system, and pressure measurements were made along the riser in order to evaluate the accuracy of simulations. Euler-Euler simulations provided close estimation of the experimental pressure drop and the pressure drop according to distance in the linear region. Simulation of the fluid dynamics in the riser showed that solids clusters were formed at low concentrations near the feeding device, reflecting heterogeneity in the solid phase volume fraction.