In this paper,an Unmanned Aerial Vehicle(UAV)-assisted relay communication system is studied,where a UAV is served as a flying relay to maintain a communication link between a mobile source node and a remote destinati...In this paper,an Unmanned Aerial Vehicle(UAV)-assisted relay communication system is studied,where a UAV is served as a flying relay to maintain a communication link between a mobile source node and a remote destination node.Specifically,an average outage probability minimization problem is formulated firstly,with the constraints on the transmission power of the source node,the maximum energy consumption budget,the transmission power,the speed and acceleration of the flying UAV relay.Next,the closed-form of outage probability is derived,under the hybrid line-of-sight and non-line-of-sight probability channel model.To deal with the formulated nonconvex optimization,a long-term proactive optimization mechanism is developed.In particular,firstly,an approximation for line-of-sight probability and a reformulation of the primal problem are given,respectively.Then,the reformulated problem is transformed into two subproblems:one is the transmission power optimization with given UAV’s trajectory and the other is the trajectory optimization with given transmission power allocation.Next,two subproblems are tackled via tailoring primal–dual subgradient method and successive convex approximation,respectively.Furthermore,a proactive optimization algorithm is proposed to jointly optimize the transmission power allocation and the three-dimensional trajectory.Finally,simulation results demonstrate the performance of the proposed algorithm under various parameter configurations.展开更多
This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the ...This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the UAVs only have limited-energy in practice,our design aims to maximize the energy efficiency(EE)through jointly designing the communica-tion scheduling,the transmit power allocation,as well as UAV trajectory under the buffer constraint over a given flight period.Actually,the formulated fractional optimization problem is diffi-cult to be solved in general because of non-convexity.To re-solve this difficulty,an efficient iterative algorithm is proposed based on the block coordinate descent(BCD)and successive convex approximation(SCA)techniques,as well as the Dinkel-bach’s algorithm.Specifically,the optimization variables of the formulated problem are divided into three blocks and we alter-nately optimize each block of the variables over iteration.Numeri-cal results verify the convergence of the proposed iterative al-gorithm and show that the proposed designs achieve significant EE gain,which outperform other benchmark schemes.展开更多
基金co-supported by the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030)the National Natural Science Foundation of China(Nos.61871398 and 61931011)the National Key R&D Program of China(No.2018YFB1801103)。
文摘In this paper,an Unmanned Aerial Vehicle(UAV)-assisted relay communication system is studied,where a UAV is served as a flying relay to maintain a communication link between a mobile source node and a remote destination node.Specifically,an average outage probability minimization problem is formulated firstly,with the constraints on the transmission power of the source node,the maximum energy consumption budget,the transmission power,the speed and acceleration of the flying UAV relay.Next,the closed-form of outage probability is derived,under the hybrid line-of-sight and non-line-of-sight probability channel model.To deal with the formulated nonconvex optimization,a long-term proactive optimization mechanism is developed.In particular,firstly,an approximation for line-of-sight probability and a reformulation of the primal problem are given,respectively.Then,the reformulated problem is transformed into two subproblems:one is the transmission power optimization with given UAV’s trajectory and the other is the trajectory optimization with given transmission power allocation.Next,two subproblems are tackled via tailoring primal–dual subgradient method and successive convex approximation,respectively.Furthermore,a proactive optimization algorithm is proposed to jointly optimize the transmission power allocation and the three-dimensional trajectory.Finally,simulation results demonstrate the performance of the proposed algorithm under various parameter configurations.
基金supported by the National Natural Science Foundation of China(61671474).
文摘This paper studies a multiple unmanned aerial vehicle(UAV)relaying communication system,where multiple UAV re-lays assist the blocked communication between a group of ground users(GUs)and a base station(BS).Since the UAVs only have limited-energy in practice,our design aims to maximize the energy efficiency(EE)through jointly designing the communica-tion scheduling,the transmit power allocation,as well as UAV trajectory under the buffer constraint over a given flight period.Actually,the formulated fractional optimization problem is diffi-cult to be solved in general because of non-convexity.To re-solve this difficulty,an efficient iterative algorithm is proposed based on the block coordinate descent(BCD)and successive convex approximation(SCA)techniques,as well as the Dinkel-bach’s algorithm.Specifically,the optimization variables of the formulated problem are divided into three blocks and we alter-nately optimize each block of the variables over iteration.Numeri-cal results verify the convergence of the proposed iterative al-gorithm and show that the proposed designs achieve significant EE gain,which outperform other benchmark schemes.